АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Динамическая погрешность

Читайте также:
  1. А. Средняя квадратическая погрешность функции измеренных величин.
  2. Абсолютная погрешность.
  3. Аэродинамическая сила и ее момент.
  4. Б) Динамическая вольт-амперная характеристика дуги.
  5. В) Объединяющий символ как динамическая закономерность.
  6. Вопрос №28. Статическая и динамическая память. Основное назначение сверхоперативного запоминающего устройства и КЭШ памяти. Характеристика КЭШ памяти.
  7. Гидродинамическая сила и ее момент.
  8. Глава 13. ДИНАМИЧЕСКАЯ ВСЕЛЕННАЯ
  9. Динамическая веревка
  10. Динамическая гимнастика
  11. Динамическая концепция хар-ра
  12. Динамическая маршрутизация

Динамическая погрешность – это погрешность СИ, возникаю­щая при измерении изменяющейся в процессе измерений физи­ческой величины.

Предположение о статической модели объекта (без имеющихся на то оснований) может привести к большим ошибкам. Инерцион­ность прибора при быстроменяющихся входных сигналах рождает динамическую погрешность результата измерения, а иногда и просто приводит к невозможности определить результат. Например: маг­нитоэлектрический амперметр не в состоянии зафиксировать крат­ковременный (длительностью менее 1 с) импульс тока.

На рис. 1.17 показано возникновение динамической погреш­ности Δд при протекании через магнитоэлектрический измери­тельный механизм быстро меняющегося тока. На рис. 1.17 изобра­жены кривая изменения тока i (t),текущего через механизм, и кри­вая изменения показаний α(t). Механическая инерционность под­вижной части прибора приводит к неизбежному отставанию ее реакции при быстрых изменениях тока. Возникающая при этом динамическая погрешность Δд тем больше, чем выше скорость изменения i (t)и чем больше мас­са подвижной части.

Меняющиеся, исследуемые сигналы могут приводить к зна­чительным погрешностям ре­зультатов косвенных измерений вследствие неодновременности выполнения различных исходных прямых измерений. Факти­чески это тоже

Рис.1.17. Динамическая погрешность

Рис.1.18. Косвенное измерение мощности одним прибором

динамическая по­грешность, но в данном случае она определяется не быстродействием отдельных приборов, а скоростью изменения исследуе­мых параметров и особенностя­ми организации эксперимента. Несинхронность получения от­дельных исходных результатов измерения как следствие выбран­ного метода (подхода) заставля­ет относить эту погрешность так­же и к методической, посколь­ку она не зависит от характери­стик (в частности, классов точ­ности) самих приборов.

Проиллюстрируем природу возникновения этой погрешности на примере косвенного измерения активной мощности в однофаз­ной электрической цепи одним прибором цифровым мультиметром с токовыми клещами. Поочередно (с некоторой естествен­ной временной задержкой Δ t) измеряются текущие действующие значения напряжения U и тока I, а затем вычисляется значение активной мощности Р (рис. 1.18).

Предположим, что в момент времени t 1 измерено действующее значение напряжения U (t 1)= 220 В. Затем, скажем через 1 мин, в момент времени t 2этим же прибором измерено действующее зна­чение тока I (t 2) = 3,0 А. Далее по результатам этих исходных пря­мых измерений вычисляется значение активной мощности (нагрузку считаем чисто активной):

Р = U (t 1) I (t 2) = 220 · 3,0 = 660 Вт.

Между тем, реальные значения активной мощности Р Рв моменты времени t 1 и t 2были равны, соответственно:

Р (t 1) = U (t 1) I (t 2)= 220 · 3,3 = 726 Вт,

P P(t 2) = U (t 2) I (t 2)= 240 · 3,0 = 720 Вт.

Таким образом, разница между вычисленным (660 Вт) и ре­альными (726 и 720 Вт) значениями активной мощности в дан­ном случае составляет около 10%. Причем это без учета ин­струментальной погрешности прибора, погрешности взаимодей­ствия и др.

Если аналогичная методика используется для оценки мощно­сти в трехфазной электрической цепи, то ошибка может быть зна­чительнее за счет большего общего времени задержки Δ t.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)