|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Проверка нормальности распределения результатов наблюденийПри количестве измерений Количество интервалов
Одним из методов решения задачи проверки нормальности является метод моментов. При его использовании определяется расхождение между гистограммой и теоретическим распределением. При использовании данного метода построения теоретической кривой распределения Гаусса параметры определяют из экспериментальных данных. Рассчитывается оценка 1-го момента (математическое ожидание) и оценка 2-го момента (дисперсия распределения). Затем эти моменты подставляют в распределение Гаусса как параметры теоретического распределения. После построения теоретической кривой необходимо ответить, чем вызваны расхождения между гистограммой и теоретической кривой: случайными обстоятельствами, вызванными ограниченным количеством измерений, или тем, что результаты измерений распределяются по другому закону. Существует несколько критериев согласия, по которым проверяется гипотеза о соответствии экспериментальных данных тому или иному закону распределения. В соответствии с критерием Пирсона строится величина
При этом
Такая мера расхождения
Т.о. можно выделить следующие стадии проверки нормальности результатов наблюдения: 1)полученные наблюдения группируют по интервалам и подсчитывают частоты 2)вычисляют оценку математического ожидания полученных измерений и оценку дисперсии, которые принимают затем в качестве параметров теоретического распределения; 3)для каждого интервала находят теоретические вероятности попадания в них результатов наблюдения
4)для каждого интервала определяют 5)определяют число степеней свободы 6)для заданной вероятности Если Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |