|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Косвенные измерения. Коэффициент корреляцииПри косвенных измерениях значение искомой величины получают на основании известной зависимости, связывающей ее с другими величинами, подвергаемыми прямым измерениям. Пусть величина определяется через две величины следующим образом ; , где , , - оценки истинного значения (среднее арифметическое результатов измерения), , , - случайные погрешности средних. В этом случае , . Дисперсия Математическое ожидание - корреляционный момент. Обычно при определении погрешности косвенных измерений вместо него пользуют безразмерную величину – коэффициент корреляции , . При “+”коэффициенте корреляции одна из погрешностей возрастает с возрастанием другой. При “-”коэффициенте корреляции одна из погрешностей убывает с возрастанием другой. Если коэффициент корреляции равен нулю, то в этом случае погрешности измерения одной величины не связаны (не коррелируют) с погрешностями измерения другой величины.
Во время проведения эксперимента при подозрении, что в измерениях есть корреляционная зависимость, необходимо установить, чем обусловлено отличие построенной диаграммы от окружности: тем, что в измерениях есть корреляционная зависимость, или же тем, что данная выборка измерена недостаточно, т.е. обусловлена случайным фактором. , , , . Необходимо установить границы доверительной вероятности определения коэффициента корреляции. При для дисперсии распределения коэффициента корреляции применяется следующая формула . Корреляционная зависимость считается установленной, если выполняется условие . Наименьшая величина, для которой связь считается установленной, в зависимости от количества измерений определяется по формуле . Например , . Распределение результатов косвенных измерений будет нормальным, если распределение результатов прямых измерений подчиняется закону распределения Гаусса. При малом количестве измерений используют таблицу распределения Стьюдента. Результат косвенных измерений записывают следующим образом , . При использовании таблицы распределения Стьюдента коэффициент (степень свободы): , .
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |