|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Особенности кристаллической структуры и свойств купратных ВТСП соединений
Все основные ВТСП-системы имеют слоистую структуру. На рисунке 2 приведены для примера структуры элементарных ячеек самых распространённых ВТСП-соединений YBa2Cu3O7 (Y-123) и Bi2Sr2Ca2Cu3Ox (Bi-2223). Особенностью структуры всех ВТСП соединений является очень большая величина параметра решётки в направлении оси «с». Так, для Y-123 с=11,69Å (для сравнения, а=3,83Å, b=3,89Å), а для Bi-2223 еще больше – 37,14 Å (для сравнения, а=b=5,41Å). Из такой «вытянутой» структуры должна следовать анизотропия их физических свойств (в том числе и токонесущей способности) в направлении оси «с» и осей «а» и «b», что и наблюдается в действительности [2]. Сверхпроводимость купратных ВТСП связана с наличием слоёв Сu-О, роль остальных элементов сводится к созданию нужной структуры этих слоёв. Сверхпроводящий ток течёт параллельно именно этим слоям. Это обстоятельство важно для технологии ВТСП-проводников – для хорошей сверхпроводимости необходимо, чтобы отдельные кристаллиты ВСТП соединения были ориентированы, по возможности, одинаково (то есть, чтобы они были текстурированы). Разворот кристаллитов относительно друг друга всего на ~ 100 ухудшает токонесущие характеристики проводника примерно на порядок.
Рисунок 2 - Кристаллическая структура ВТСП соединений Y-123 (слева) и Bi-2223 (справа) [2]
Надо особо отметить разные порядки сверхпроводящих характеристик внутри кристаллитов (или как говорят, внутри гранул) и в макрообъёме сверхпроводника. В то время как значения критического тока внутри гранул при 77К превышают 106 А/см2, токонесущие свойства реальных проводников значительно хуже -~ 104 А/см2. Это связано с тем, что главную роль в свойствах керамики играют межзёренные (межгранульные) границы или так называемые «слабые связи». Главной задачей технологии ВТСП проводников является подбор таких условий синтеза и спекания соединения, чтобы максимально улучшить качество межзёренных границ. Из сверхпроводящих свойств ВТСП соединений надо отметить их температурную зависимость. Сверхпроводящие свойства при «азотной» температуре (70 К) не очень высоки, и они ещё очень сильно зависят от величины и направления приложенного внешнего магнитного поля. С понижением температуры свойства сверхпроводника значительно улучшаются. В собственном магнитном поле токонесущая способность в жидком гелии (4,2 К) примерно в 5 – 10 раз выше, чем при 77 К. Но особо важное значение имеет кардинальное улучшение свойств в высоким магнитных полях. Величины верхних критических полей в ВТСП соединениях при 4,2 К очень высоки – свыше 200 Тл, невозможно даже их измерить. Хотя некоторая деградация сверхпроводящих свойств имеется (например, в поле 30 Тл критический ток уменьшается в ~ 4 раза), но в целом, применение ВТСП в магнитных системах при «гелиевой» температуре пока никак не ограничивается магнитными полями. Поэтому, говоря о ВТСП можно иметь ввиду, что это не только высокотемпературная сверхпроводимость, но и высокополевая.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |