АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

КОНТРОЛЬНАЯ РАБОТА №2. 7.Классическим методом найти частное решение системы дифференциальных уравнений удовлетворяющее начальным условиям

Читайте также:
  1. V. САМОСТОЯТЕЛЬНАЯ РАБОТА
  2. Window - работа с окнами.
  3. Аналитическая работа при выборе и обосновании стратегии развития предприятии
  4. Б) работа врачей поликлиники (амбулатории), диспансера, консультации
  5. В 72-х дневном цикле подвиг длится 8 суток, из которых 2 суток – голод, а 6 – очистительные процедуры и работа над собой. В 12-ти летнем цикле подвиг длится 1 год.
  6. В работах В. Джеймса
  7. В) профилактическая работа
  8. Виртуальная работа силы. Идеальные связи
  9. Власть и норма в работах Фуко
  10. Влияние на организм термически обработанной пищи
  11. Влияние работающего на точность изготовляемых деталей.
  12. Внеклассная работа по русскому языку: принципы, виды и формы организации.

 

7. Классическим методом найти частное решение системы дифференциальных уравнений удовлетворяющее начальным условиям .

 

Решение. Решением этой системы является пара функций , , удовлетворяющих системе, причем .

Продифференцируем первое уравнение по переменной :

.

Из первого уравнения определяем , следовательно, из второго уравнения имеем

.

Подставляем в уравнение, полученное после дифференцирования, приходим к уравнению

,

– линейное дифференциальное уравнение II порядка с

постоянными коэффициентами.

Составляем характеристическое уравнение и находим его корни:

– действительные различные корни.

В этом случае общее решение дифференциального уравнения имеет вид

,

.

Ранее определили . Тогда

.

Общее решение системы

Находим значения произвольных постоянных, используя начальные условия :

Частное решение системы

 

 

8. Вычислить определённый интервал с точностью до 0,001 путём разложения подынтегральной функции в ряд и почленного интегрирования этого ряда.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)