АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение. 1) Произвольный вектор представляется в системе орт по формуле

Читайте также:
  1. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  2. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс. Резонансные кривые.
  3. Дифференциальное уравнение затухающих колебаний и его решение. Основные характеристики затухающих колебаний. Логарифмический декремент затухания. Апериодический процесс.
  4. Решение.
  5. Решение.
  6. Решение.
  7. Решение.
  8. Решение.
  9. Решение.
  10. Решение.
  11. Решение.
  12. Решение.

1) Произвольный вектор представляется в системе орт по формуле

,

где – координаты вектора . Если заданы точки , , то для вектора

,

то есть

.

Воспользовавшись формулой и координатами заданных точек А, В, С, D, получим:

;

;

.

Если вектор , то его модуль вычисляется по формуле:

.

Модули найденных векторов

;

;

.

2) Известна формула

,

где – скалярное произведение векторов и , которое можно вычислить следующим образом:

.

У нас

,

то есть .

3) Известно, что

,

то есть в нашем случае

.

4) Воспользуемся формулой нахождения площади треугольника, построенного на векторах и

,

где – векторное произведение векторов, которое можно вычислить по следующему правилу:

.

В нашем примере , причем

.

Таким образом, (кв. ед.).

5) Объем пирамиды, построенной на трех некомпланарных векторах можно найти по формуле

,

где – смешанное произведение векторов, которое вычисляется следующим образом:

.

У нас , где

,

то есть (куб. ед.).

6) Известно, что уравнение прямой, проходящей через две заданные точки и имеет вид:

.

Подставив координаты точек А и С, получим

,

то есть уравнение ребра АС окончательно запишется следующим образом:

или .

7) Уравнение плоскости, проходящей через три заданные точки , , можно записать в виде

.

Подставляя в него координаты точек А, В, С, получим

 

 

4. Провести полное исследование функции методами дифференциального исчисления и построить ее график.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)