|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Классификация видов моделирования системВ основе классификации видов моделирования систем лежат различные признаки, такие как – степень полноты модели; – характер изучаемых процессов в системе; – форма представления системы. Классификация видов моделирования систем приведена на рис. 1.4 [8]. Основой моделирования является теория подобия, из которой следует, что абсолютное подобие может иметь место лишь при замене одного объекта другим, точно таким же. При моделировании абсолютное подобие не имеет места, и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования системы. Поэтому в качестве одного из первых признаков классификации видов моделирования можно выбрать степень полноты модели и разделить модели в соответствии с этим признаком на полные, неполные и приближенные.
Рис. 1.4. Классификация видов моделирования систем
В основе полного моделирования лежит полное подобие, которое проявляется как во времени, так и в пространстве. Для неполного моделирования характерно неполное подобие модели изучаемому объекту. При приближенном моделировании лежит приближённое подобие, при котором некоторые стороны функционирования реальной системы не учитываются совсем. B зависимости от характера изучаемых процессов в системе все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, т.e. процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, a динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, a дискретно-непрерывное моделирование используется для случаев, когда хотят выделять наличие как дискретных, так и непрерывных процессов. B зависимости от формы представления объекта (системы) можно выделить мысленное и реальное моделирование. Мысленное моделирование – это моделирование объектов без их практической реализации. Реальное моделирование заключается в проведении исследования на реальном объекте целиком или его части. Мысленное моделирование часто является единственным способом моделирования объектов, которые либо практически не реализуемы в заданном интервале времени, либо существуют вне условий для их физического создания. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического. Наглядное моделирование основывается на базе представлений человека о реальных объектах и подразделяется на гипотетическое, аналоговое и макетирование. B основу гипотетического моделирования исследователем закладывается некоторая гипотеза о закономерностях протекания процесса в реальном объекте, которая отражает уровень знаний об объекте. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается на применении аналогий различных уровней. Макетирование основывается на создании мысленных макетов и используется в тех случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшествовать проведению других видов моделирования. Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью определенной системы знаков или символов.Символическое моделирование подразделяется на языковое и знаковое. Языковое моделирование основывается на фиксированном наборе понятий. В основе языкового моделирования лежит тезаурус – словарь, который очищен от неоднозначности, т.е. в нём каждому слову может соответствовать лишь единственное понятие. При знаковом моделировании введены условные обозначения отдельных понятий, т.е. знаки, а также определённые операции между этими знаками. С помощью знаков можно составлять отдельные цепочки из слов и предложений, а использование операций позволяет получать описание реальных объектов. Для исследования характеристик процесса функционирования любой системы математическими методами должна быть проведена формализация этого процесса, т.е. построена математическая модель. Важное место занимает математическое моделирование, представляющее собой процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получить характеристики рассматриваемого реального объекта. Любая математическая модель, как и всякая другая, описывает реальный объект лишь с некоторой степенью приближения. Математическое моделирование включает в себя аналитическое, имитационное и комбинированное. Аналитическое моделирование основывается на косвенном описании реального объекта с помощью набора математических выражений, которые образуют аналитическую модель. Компьютер при аналитическом моделировании используется в качестве вычислителя. Для аналитического моделирования характерно то, что процессы функционирования исследуемой системы записываются в виде некоторых функциональных соотношений (алгебраических, интегро-дифференциальных, конечно-разностных и т.п.) или логических условий. Аналитическая модель может быть исследована следующими методами: – аналитическим, когда стремятся получить в общем виде явные зависимости для искомых характеристик; – численным, когда, не умея решать уравнения в общем виде, стремятся получить численные результаты при конкретных начальных данных; – качественным, когда, не имея решения в явном виде, можно найти некоторые свойства решения (например, устойчивость). Наиболее полное исследование процесса функционирования системы можно провести, если известны явные зависимости, связывающие искомые характеристики с начальными условиями, параметрами и переменными системы. Однако такие зависимости удаётся получить только для сравнительно простых систем. При усложнении систем исследование их аналитическим методом наталкивается на значительные трудности. Имитационное моделирование основано на прямом описании моделируемого объекта, используя структурное подобие объекта и модели, т.е. каждому существенному, с точки зрения решаемой задачи, элементу объекта ставится в соответствие элемент модели. При имитационном моделировании в качестве имитационной модели выступает алгоритм, воспроизводящий процесс функционирования исследуемой системы, при этом имитируются элементарные явления составляющего процесса, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определённые моменты времени, дающие возможность оценить характеристики системы. Компьютер при имитационном моделировании служит имитатором исследуемой системы Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Метод имитационного моделирования позволяет решать задачи анализа больших систем, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему с заданными характеристиками при определённых ограничениях, которая является оптимальной по выбранным критериям оценки эффективности. Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности. При реальном моделировании используется возможность исследования различных характеристик либо на реальным объекте целиком, либо на его части. Отличие эксперимента от реального протекания процесса заключается в том, что в нём могут появиться отдельные критические ситуации. В ходе эксперимента вводятся новые факторы и возмущающие воздействия в процессе функционирования объекта. Реальное моделирование подразделяется на натурное и физическое. Натурным моделированием называют проведение исследования на реальном объекте с последующей обработкой результатов эксперимента на основе теории подобия. При функционировании объекта в соответствии с поставленной целью удаётся выявить закономерности протекания реального процесса. Разновидности натурного моделирования, как комплексные испытания, производственный эксперимент и натурный эксперимент, обладают высокой степенью достоверности. Физическое моделирование отличается от натурного тем, что исследование проводится на установках, которые сохраняют природу явлений и обладают физическим подобием. В процессе физического моделирования задаются некоторые характеристики внешней среды и исследуется поведение либо реального объекта, либо его модели при заданных или создаваемых искусственно воздействиях внешней среды. Физическое моделирование может протекать в реальном и нереальном (псевдореальном) масштабах времени, а также может рассматриваться без учёта времени. Реальное моделирование является наиболее адекватным, но при этом его возможности с учётом особенностей реальных объектов ограничены. С точки зрения математического описания объекта и в зависимости от его характера модели можно разделить на модели аналоговые (непрерывные), цифровые (дискретные) и аналого-цифровые (комбинированные). Под аналоговой моделью понимается модель, которая описывается уравнениями, связывающими непрерывные величины. Под цифровой понимается модель, которая описывается уравнениями, связывающими дискретные величины, представленные в цифровом виде. Под аналого-цифровой понимается модель, которая может быть описана уравнениями, связывающими непрерывные и дискретные величины. Особый вид моделирования – кибернетическое моделирование, в котором отсутствует непосредственное подобие между реальным объектом и моделью. В этом случае стремятся отобразить лишь некоторую функцию и рассматривают реальный объект как “чёрный ящик”, имеющий ряд входов и выходов, и моделируются некоторые связи между выходами и входами. Чаще всего при использовании кибернетических моделей проводят анализ поведенческой стороны объекта при различных воздействиях внешней среды. Таким образом, в основе кибернетических моделей лежит отношение некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. “Высшее назначение математики - Находить порядок в хаосе, Который нас окружает “. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |