|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Арифметические действия в двоичной и шестнадцатеричной системах счисленияИсключительная роль десятка восходит к истокам цивилизации и без всякого сомнения связана со счетом по пальцам на двух руках. Но наименование в числительных в разных языках указывает и на наличие – в былые времена – иных систем счисления, а именно: с основаниями двадцать и двенадцать. В английском и немецком языках слова, обозначающие 11 и 12, построены не по десятичному принципу, сочетающему десятки с единицами: они лингвистически независимы от слов, обозначающих число 10. Во французском языке слова, обозначающие 20 или 80, позволяют предполагать о первоначальном существовании системы с основанием 20, используемой для тех или иных надобностей. В датском языке слово halvfirsindstyve, обозначающее 70, буквально переводится «полпути от трижды двадцать до четырежды двадцать». Вавилонские астрономы пользовались системой частично секзагезимальной структуры (с основанием 60), и предполагается, что именно в этом обстоятельстве следует искать объяснение того факта, что час и угловой радиус разделены на 60 минут. Как правило, люди считают в десятичной системе, где для изображения чисел используются 10 цифр: 0, 1, …, 9. Основой других систем счисления являются иные символы, число которых может быть меньше или больше 10. Рассмотрим две такие системы, в одной из которых (двоичной) для представления чисел используются два символа (две двоичные цифры) 0 и 1, а в другой (шестнадцатеричной) — 16 символов. Прежде чем приступить к рассмотрению этих систем, опишем правила, по которым происходит процесс счета в десятичной системе. В десятичной системе при изображении чисел, больших девяти, различные символы (т. е. цифры 0, 1, …, 9) располагаются друг за другом, например 365. Комбинации этих символов могут быть получены сложением 1 и 0 с последующим добавлением 1 к каждой получаемой сумме: 1 + 0 = 1, 1+ 1 = 2, 1 + 2 = 3 и т. д. Поскольку при операции сложения 1 + 9 сумму невозможно изобразить одним символом, поэтому слева от цифры девять, к которой прибавляется 1, ставится 1, а саму цифру девять заменяют цифрой 0, иначе говоря, осуществляют перенос в старший разряд. После этого можно продолжать операцию добавления 1 к сумме. Описанный процесс, называемый счетом, позволяет получить все комбинации цифр, используемых для изображения чисел в десятичной системе. • Заметим, что при счете в десятичной системе особое внимание следует обращать на выполнение переноса и замену наибольшей цифры наименьшей. Рассмотрим теперь, как происходит счет в двоичной системе счисления. Напомним, что в этой системе для изображения чисел используются только два символа: 0 и 1. Начнем счет также, как и в десятичной системе, складывая 1 и 0. Естественно, что 1 + 0 = 1. Добавим к полученной сумме 1. Поскольку сумму в двоичной системе невозможно представить одной цифрой, как и раньше, выполним перенос: припишем слева к первой сумме 1, а ее значение заменим на 0. • Заметим, что операция переноса выполняется также, как при счете в десятичной системе с той лишь разницей, что в двоичной системе используются только два символа (две двоичные цифры). Процесс счета в десятичной и двоичной системах счисления показан в табл. 2, из которой следует, что десятичное число 7 эквивалентно двоичному числу (0111). Нетрудно также установить, что в обеих системах процесс счета можно продолжать бесконечно, при этом каждому десятичному числу будет соответствовать некоторое двоичное число. Таблица 2 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |