АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция
|
Интегрирование по частям
Интегрирование по частям - приём, который применяется почти так же часто, как и замена переменной. Пусть u (x) и v (x) - функции, имеющие непрерывные частные производные. Тогда по формуле дифференцирования произведения d (uv) = u∙dv + v∙du . Находим неопределённые интегралы для обеих частей этого равенства (при этом ): . Эта формула и называется формулой интегрирования по частям. Часто ее записывают в производных (dv = v ’ ∙dx, du = u ’ ∙dx):
. Примеры: . . Формула интегрирования по частям может применяться неоднократно. При наличии небольшого опыта в простых интегралах нет необходимости выписывать промежуточные выкладки (u = …, dv = …), можно сразу применять формулу, представив интеграл в виде : .
Приведённые примеры показывают, для каких функций надо применять (или попытаться применить) формулу интегрирования по частям: Интегралы вида , , , где Pn (x) - многочлен n -ой степени. Так, для имеем , , и . В результате мы получили интеграл того же типа с многочленом степени на единицу меньше. После n -кратного применения формулы степень многочлена уменьшится до нуля, т.е. многочлен превратится в постоянную, и интеграл сведётся к табличному. Интегралы , где - трансцендентная функция, имеющая дробно-рациональную или дробно-иррациональную производную (ln x, arctg x, arcctg x, arcsin x, arcos x). В этом случае имеет смысл взять u = f (x), d v = Pn (x) dx, для того, чтобы в интеграле участвовала не f (x), а её производная. Пример: .
Для некоторых функций применяется приём “сведения интеграла к самому себе”. С помощью интегрирования по частям (возможно, неоднократного) интеграл выражается через такой же интеграл; в результате получается уравнение относительно этого интеграла, решая которое, находим значение интеграла. Примеры: Найти (это интеграл №19 из табл. 10.3.неопределённых интегралов; в предыдущем параграфе мы вычислили этот интеграл с помощью тригонометрической подстановки ).
. В результате для искомого интеграла мы получили уравнение , решая которое, получаем (константа С появилась вследствие того, что интегралы в правой и левой частях уравнения определены с точностью до произвольной постоянной) и (константа переобозначена через С). Сведение интеграла к самому себе – самый простой способ нахождения часто встречающихся интегралов вида и (). Например, . Итак, после двукратного интегрирования по частям получено уравнение относительно : , решение которого . При нахождении эти интегралов не принципиально, положим ли мы u = cos bx, dv = eax dx или u = eax, dv = cos bx dx; важно только при втором применении формулы интегрирования по частям загонять под знак дифференциала функцию того же типа, что и при первом (показательную или тригонометрическую).
Ещё один вид формул, которые обычно получаются с помощью интегрирования по частям, и используются для нахождения интегралов - рекуррентные соотношения. Если подынтегральная функция зависит от некоторого параметра n, и получено соотношение, которое выражает интеграл через аналогичный интеграл с меньшим значением n, то это соотношение и называется рекуррентным соотношением. Примеры: . Представим подынтегральную функцию в виде ; интеграл от первого слагаемого аналогичен исходному с значением параметра n на две единицы меньше; к интегралу от второго слагаемого применим формулу интегрирования по частям: . Теперь, зная , , мы можем выписать ; ;
и т.д.
Замена переменной в неопределённом интеграле (интегрирование подстановкой).
Пусть . Тогда . Здесь t (x) - дифференцируемая монотонная функция. При решении задач замену переменной можно выполнить двумя способами. 1. Если в подынтегральной функции удаётся сразу заметить оба сомножителя, и f (t (x)), и , то замена переменной осуществляется подведением множителя под знак дифференциала: , и задача сводится к вычислению интеграла . Например, (задача сведена к вычислению , где t = cos x) (аналогично находится интеграл от ); (задача сведена к вычислению , где t = sin x) . В более сложных задачах операция подведения под знак дифференциала может выполняться несколько раз: (самое неприятное в подынтегральной функции - пятая степень арккотангенса под знаком экспоненты; если дальше не найдётся дифференциал этой функции, то интеграл, возможно, взять вообще не удастся; в то же время следующий множитель (arcctg4 x 2) - производная (с точностью до постоянного множителя) степенной функции; затем следуют производные (опять с точностью до постоянных множителей) функций arcctg x 2 и x 2 по своим аргументам)
2. Замену переменной можно осуществлять формальным сведением подынтегрального выражения к новой переменной. Так, в имеет смысл перейти к переменной (сделать подстановку) t = sin x. Выражаем все множители подынтегрального выражения через переменную t: ; в результате (возвращаемся к исходной переменной) .
Другие примеры: . Подынтегральная функция содержит два множителя, ни один из которых не является производной другого, поэтому подводить их под знак дифференциала бесполезно. Попытаемся ввести новую переменную, такую, чтобы корни извлеклись: = . Рассмотрим (интеграл №19 из табл.). Здесь подынтегральная функция состоит из единственного множителя; можно опять попытаться сделать такую замену переменной, чтобы корень извлёкся. Структура подкоренного выражения подсказывает эту замену: (или , ): . Интеграл свёлся к интегралу от квадрата косинуса. При интегрировании чётных степеней синуса и косинуса часто применяются формулы, выражающие и через косинус двойного угла: . Поэтому . Примеры: 1.
.
2.
Вопросы для закрепления теоретического материала к практической работе.
- Какая функция называется преобразованной для заданной функции?
- Почему при интегрировании функции появляется произвольная постоянная?
- Что называется неопределенным интегралом?
- Каковы основные свойства неопределенного интеграла?
- Как проверить результат интегрирования?
-
1 | 2 | 3 | 4 | Поиск по сайту:
|