АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Технические особенности конечных автоматов

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. III. Психические свойства личности – типичные для данного человека особенности его психики, особенности реализации его психических процессов.
  3. IV. Особенности правового регулирования труда беременных женщин
  4. V. Особенности развития предпринимательства
  5. Аграрная реформа 1861 г., ее механизм и особенности проведения в белорусских губерниях.
  6. Агрегатный индекс цен: особенности построения с учетом разных весов
  7. Акты применения права, их особенности и виды
  8. Акты применения права: понятие, особенности и виды.
  9. Акты толкования права: понятие, особенности, виды.
  10. АНАТОМО-ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ДЕТЕЙ МЛАДШЕГО ШКОЛЬНОГО ВОЗРАСТА
  11. Анатомо-физиологические особенности кожи, подкожной клетчатки, лимфатических узлов. Методика обследования. Семиотика.
  12. Анатомо-физиологические особенности костно-мышечной системы. Методы обследования. Семиотика.

В схемах ЭВМ все сигналы изменяются и воспринимаются, как правило, в дискретные моменты времени, обозначаемые числами натурального ряда t = 0, 1,…. Для отметки моментов дискретного времени ЭВМ содержит специальный блок, вырабатывающий синхронизирующие импульсы (СИ), следующие через равные интервалы времени Т. Этот интервал времени Т определяет такт работы устройства.

Поэтому первая техническая особенность связана с необходимостью синхронизации работы конечного автомата, причем синхронизации подлежат не только выходные сигналы, но и функции возбуждения. В связи с этим в автомат обычно вводят две серии синхроимпульсов СИ1 и СИ2, сдвинутых на половину периода друг против друга (рис. 7.1).

Рис. 7.1

Под действием СИ1 формируются выходные сигналы, а под действием СИ2 автомат переводится в новое состояние. В результате структурная схема автомата имеет следующий вид (рис. 7.2).

Рис. 7.2

Согласно приведенной схеме на входах каждого из триггеров стоят двухвходовые элементы И. На практике триггера часто выполняются в синхронном варианте (синхронные триггера), когда упомянутые элементы И включают в схему триггера. Например, схему синхронного RS-триггера можно рассматривать как состоящую из асинхронного RS-триггера, ко входам R и S которого подключены двухвходовые элементы И.

На эти элементы кроме входных сигналов поступает синхронизирующий сигнал, обозначаемый буквой C (рис. 7.3):

Рис. 7.3

Очевидно, синхронные триггера будут сохранять свои состояния при С = 0, а переходы в них возможны при С = 1. Применение синхронных триггеров в качестве элементов памяти конечного автомата облегчает организацию синхронизации таких автоматов.

Вторая техническая особенность конечного автомата связана с возможностью возникновения неустойчивых состояний и так называемых «гонок» в автомате. Понятие устойчивости заключается в следующем. Пусть в графе автомата мы имеем такой участок (рис. 7.4):

Рис. 7.4

Здесь оба перехода выполняются под действием одного и того же входного сигнала xо. Если длительность сигнала СИ2 больше времени перехода автомата из состояния ai в состояние as, то сразу после перехода автомата в as может начаться переход в следующее состояние af под действием того же входного сигнала xj. Таким образом автомат может перескочить состояние as и к моменту времени t + 1 оказаться не в as, как это требуется по графу, а в af. Состояние as в данном случае будет неустойчивым.

Другой неприятный момент заключается в том, что при работе автомата могут возникать так называемые «гонки» (состязания). Дело в том, что триггера в схеме имеют различные времена срабатывания, а также различные времена задержек сигналов обратной связи, которые поступают с выходов триггеров на их входы через КС1. По этим причинам, если при переходе автомата из состояния ai в as должны измениться состояния нескольких триггеров, то между их выходными сигналами начинаются гонки. Тот триггер, который выиграет гонку, то есть изменит свое состояние раньше других триггеров, может через цепь обратной связи изменить сигналы возбуждения на входах других триггеров до того момента, как они изменят свои состояния. Это, очевидно, может вызвать переход автомата совсем не в то состояние, которое нужно по графу. Пусть, например, ai = 101, as = 010. Тогда при переходе из ai в as под действием входного сигнала xj меняются состояния всех триггеров. Допустим, что первый триггер изменил свое состояние раньше других. В этом случае автомат окажется в некотором промежуточном состоянии ah = 001, и если из этого состояния есть переход под действием сигнала xj в состояние, напрмер, al = 011, то автомат в момент времени t + 1 может оказаться в al , а не в состоянии as, т.е совсем в другом состоянии.

Для устранения описанного эффекта гонок и неустойчивых состояний часто используют дублирование памяти в автомате. Структурная схема автомата выглядит при этом следующим образом (рис. 7.5).

Рис. 7.5

Здесь под действием синхронизирующего сигнала СИ1 формируются выходные сигналы zl(t) … zN(t) и переключаются в новое состояние триггера первого ряда. Под действием СИ2 состояния триггеров первого ряда переписываются в соответствующие триггера второго ряда. Поскольку СИ2 сдвинуты относительно СИ1 на половину периода, а сигнал обратной связи о состоянии автомата снимается с триггеров второго ряда, то в момент поступления входного сигнала, то есть в СИ1, состояние автомата не изменяется и продолжает оставаться прежним до прихода СИ2. Поэтому в такой схеме полностью обеспечивается устойчивость состояний и устраняется влияние гонок. Действительно, гонки сигналов с выходов триггеров второго ряда возможны в момент СИ2, то есть в момент переключения этих триггеров. Но в момент СИ2 = 1, СИ1 = 0 и следовательно эти гонки никак не могут повлиять на состояния триггеров первого ряда, которые переключаются в момент СИ1 = 1. Также не будет и неустойчивых состояний, поскольку автомат не может проскочить за один такт через одно состояние и перейти в следующее, ибо в момент перехода триггеров первого ряда в новое состояние, то есть в СИ1, состояние триггеров второго ряда не меняется (СИ2 = 0) и, следовательно, не могут измениться и сигналы возбуждения триггеров первого ряда, которые зависят от состояния триггеров второго ряда. Поэтому автомат не может проскочить состояние.

С целью упрощения построения схем автоматов, имеющих двойную память, выпускаются специальные двухступенчатые триггера. Рассмотрим работу такого триггера на примере двухступенчатого JK-триггера (рис. 7.6).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)