АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Теория вероятностей и математическая статистика

Читайте также:
  1. ERG – теория Альдерфера
  2. I. Теория естественного права
  3. I.1.5. Философия как теория и
  4. III.3. Естественнонаучная и математическая мысль эпохи Средневековья
  5. V. Социологическая теория
  6. А) Теория иерархии потребностей
  7. Административная теория А. Файоля
  8. Аналитическая теория личности
  9. АТОМНАЯ ФИЗИКА. БОРОВСКАЯ ТЕОРИЯ АТОМА
  10. Безработица и ее виды. Теория естественной безработицы. Конъюнктурная безработица. Закон Оукена.
  11. Безработица и социальное поведение: теория и опыт социологических исследований
  12. Билет № 42 Аксиология (теория социальных ценностей).

Нормальным называют распределение вероятностей непрерывной случайной величины Х, плотность которого имеет вид

где а – математическое ожидание, σ – среднее квадратическое отклонение Х.

Вероятность того, что Х примет значение, принадлежащее интервалу (α,β),

Р(α<х<β)=Ф (1)

где Ф(х)= - функция Лапласа.

 

Пример 1. Математическое ожидание а нормально распределенной случайной величины Х а=10, среднее квадратическое отклонение σ= 2. Найти вероятность попадания этой величины в интервал (12;14).

Решение: Подставив в формулу (1) α=12, β=14, а=10, σ=2, получаем

Р(12<х<14)=Ф

По таблице для функции Лапласа находим, что Ф(2)= 0,4772, Ф(1)=0,3413 и искомая вероятность Р(12<х<14)=0,1359.

Оценки, которые определяются одним числом, называют точечными. При малом числе наблюдений эти оценки могут приводить к грубым ошибкам. Чтобы избежать этих ошибок, используют интервальные оценки, которые определяются двумя числами – концами интервала (в котором заключена оцениваемая величина с заданной вероятностью).

Таким образом, задача сводится к отысканию такого интервала (его называют доверительным), который с заданной вероятностью γ (ее называют надежностью) покрывают оцениваемый параметр. Наиболее часто надежность принимают равной 0,95 или 0,99, или 0,999.

В частности, при надежности γ=0,95 доверительный интервал для оценки математического ожидания а нормального распределения (по выборочной средней выборки объема n, при известном σ) находят по формуле

В обозначениях формула принимает вид:

Если доверительный интервал найден, то с надежностью 0,95 можно считать, что оцениваемый параметр заключен в этом интервале.

Пример 2. Найти доверительный интервал для оценки математического ожидания а нормального распределения с надежностью 0,95, зная выборочную среднюю =10,43 (статистическую среднюю ), объем выборки (число наблюдений) n=100 и среднее квадратическое отклонение σ=5.

Решение: Воспользуемся формулой:

Подставляя данные, получаем:

10,43-1,96(5/10)< а <10,43+1,96(5/10), или окончательно 9,45< а <11,41.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)