АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Неопределенный и определенный интегралы. Для справок приводим таблицу неопределенных интегралов

Читайте также:
  1. Б. Осознание предпочитаемой сферы жизнедеятельности («неопределенный рассказ»)
  2. Вставьте определенный, неопределенный или нулевой артикль. Выполните это упражнение письменно. В случае сомнений обратитесь к правилам.
  3. Лишение свободы на определенный срок. Виды и порядок назначения исправительных учреждений
  4. Неопределенный артикль a (an)
  5. Неопределенный интеграл
  6. Несобственные интегралы.
  7. Определенный интеграл
  8. Первообразная и неопределенный интеграл
  9. По времени действия существуют постоянные нормы, содержащиеся в законах, и временные, действующие определенный срок в конкретном регионе.
  10. Под товарооборотом торгового предприятия понимается сумма продажи им потребительских товаров за определенный период времени.
  11. Тема 1.3. Неопределенный и определенный интегралы и их свойства. Применение определенного интеграла к решению прикладных задач

Для справок приводим таблицу неопределенных интегралов. Интегрирование, основное на применение таблицы основных интегралов, основных свойств неопределенного интеграла, а также простейших тождественных преобразований подынтегральной функции, принято называть непосредственным интегрированием.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

 

 

Пример 1. Найти интегралы:

а) б) в)

Решение.

а) Применяя табличные интегралы, получим:

 

.

 

б) Преобразуем подынтегральную функцию и представим заданный интеграл в виде суммы двух других, каждый из которых табличный:

 

 

 

в) Чтобы привести данный интеграл к табличному, выразим стоящую в числителе единицу как sin2x + cos2x и разделим почленно на знаменатель:

 

 

 

Если данный интеграл не является табличным и не может быть найден способом непосредственно интегрирования, то введение новой переменной интегрирования позволяет свести данный интеграл к табличному. В этом сущность так называемого метода подстановки.

 

 

Пример 2. Найти интегралы, применяя соответствующие подставки:

а) б) в) .

 

Решение.

а) Чтобы привести данный интеграл к табличному, положим t = x2 + 1. Дифференцируя, получим dt = 2xdx, xdx = . Производя замену, получаем:

б) Пусть t = arcsin x, тогда ; следовательно,

.

в) Так как cosxdx есть дифференциал функции sin x, то данный интеграл приводится к табличному так:

Пусть u и – дифференцируемые функции от переменной х. Определим дифференциал произведения этих функций:

d (u ) = ud + du, откуда ud = d (u ) – du.

Проинтегрировав обе части последнего равенства, получим:

(1)

Эта формула (1) называется формулой интегрирования по частям. Ей пользуются в тех случаях, когда есть более простой интеграл по отношению к данному интегралу .

Пример 3. Найти интегралы:

Решение.

а) Пусть u = х и dσ = e2xdx, тогда du = dx и σ = .

Произвольную потоянную С можно учесть в окончательном ответе.

Применяя (1), получаем:

б) Пусть u = arc sin x, dσ = dx, тогда

+

 

 

Интегрирование рациональных дробей

Рациональной дробью называется дробь вида , где Р(х) и Q(х) – многочлены. Рациональная дробь называется правильной, если степень многочлена Р(х) ниже степени многочлена Q(x); в противном случае дробь называется неправильной.

Простейшими (элементарными) дробями называются правильные дроби следующего вида:

 

I. II. , где m – целое число, m > 1;

III. где , т.е. квадратный трехчлен х2 + рх + q не имеет действительных корней;

IV. где n – целое число, n > 1; т.е. квадратный трехчлен х2 + рх + q не имеет действительных корней.

Во всех четырех случаях предполагается, что А, В, р, q, а – действительные числа. Перечисленные дроби соответственно называют соответственно дробями I, II, III и IV типов.

Рассмотрим интегралы от простейших дробей I, II, III типов:

I. .

II. .

III. (здесь в знаменателе исходного интеграла выделили полный квадрат и свели к табличному интегралу).

IV. - сводится к табличному либо путем различных преобразований подинтегральной функции, либо используя рекуррентную формулу.

 

 

Пример 4. Найти интегралы:

Решение.

а) Данная дробь – правильная, ее знаменатель разложен на простейшие множители. Множителю (х – 1)3 соответствует сумма трех простейших дробей а множителю (х + 3) – простейшая дробь Итак, имеем:

Освободимся от знаменателя:

х2 + 1 = А(х + 3) + В(х – 1)2(х + 3) + С(х – 1)2(х+3)+ D(x – 1)3 (*)

 

Действительными корнями знаменателя являются числа 1 и –3.

Полагая в (*) х = 1, получаем, что 2 = 4А или А=

Полагая в (*) х = -3, получаем, что 10 = - 64 D или D = .

Сравним теперь коэффициенты при старших степенях х в левой и правой частях (*), т.е. при х3. В левой части равенства (*) нет члена с х3, т.е. коэффициент при х3 равен 0. В правой части коэффициент при х3 равен С + D. Итак, С + D = 0, откуда C =

Остается определить коэффициент В. Для этого надо иметь еще одно уравнение. Это уравнение можно получить путем сравнения коэффициентов при одинаковых степенях х (например, при х2) или придав х какое-нибудь числовое значение. Удобнее взять такое значение, при котором вычислений будет возможно меньше. Полагая х = 0, получаем из равенства (*): 1 = 3А – 3В + 3С – D или т.е.

Окончательное разложение данной дроби на простейшие имеет вид:

Таким образом, получим:

 

б) Разложим знаменатель дроби на множители: х5 – х2 = х23 - 1) = х2(х – 1) (х2 + х + 1).

Тогда

 

Освобождаемся от знаменателя:

1 = А(х – 1)(х2 +х + 1) + В(х – 1)(х2 + х + 1)х + С х22 + х + + 1) + (Dx + E) x2 (x – 1).

Действительными корнями знаменателя являются числа 0 и 1. Из последнего равенства при х = 0 имеем 1 = -А, т.е. А = -1; при х = 1, имеем 1 = 3С, т.е. С =

Перепишем предыдущее равенство в виде:

1 = А(х3 – 1) + В(х4 – х) + С(х4 + х3 + х2) + Dx4 +Ex3 –Dx3 – Ex2.

Сравнивая коэффициенты при х4, х3, х2, получаем систему уравнений

Итак,

Следовательно,

в) Так как х2 + 1 есть двукратный множитель, то Освобождаясь от знаменателя, получаем: х3- 2х = Ах + В + (Сх + D) (х2+ 1). Приравниваем коэффициенты при одинаковых степенях х:

х3: 1 = С,

х2: 0 = D,

х: -2 = А + С, А = -3,

х0: 0 = В + D, В = 0.

Следовательно,

 

 

г) Выделим целую часть данной неправильной дроби, поделив числитель на знаменатель:

Следовательно,

Разложим теперь правильную дробь на простейшие дроби:

Освободимся от знаменателей:

3 – 16х + 1 = А(х + 2)2+ В(х – 2)(х + 2)2+С(х – 2)2+D(х + 2)(х – 2)2.

Принимая в последнем равенстве:

х = 2: 33 = 42 А, откуда А=

х = -2: -31 = 16 С, откуда С= -

х =0: 1 = 4А – 8В + 4С + 8D, откуда –16В + 16D = 1.

Для того, чтобы найти В и D, сравнив коэффициенты при х3, получим еще одно уравнение: 8 = В + D. Решим получившуюся систему уравнений:

Находим, что

Итак,


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.)