|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Несобственные интегралы
Пусть функция Определение 1. Если же В отличие от интеграла Римана, только что определенный интеграл называется несобственным интегралом первого рода. Теорема 1. Если функция Пример 1. Пусть Аналогично определяется интеграл функции Интеграл функции Определение 2. Пусть функция
Этот интеграл называют несобственным интегралом ІІ рода. В первых двух случаях несобственный интеграл второго рода называется сходящимся, если пределы, указанные в его определении, конечны. Если эти пределы бесконечны или вовсе не существуют, то несобственный интеграл второго рода называется расходящимся. В третьем случае несобственный интеграл называется сходящим, если сходятся оба интеграла Пример 2. Пусть Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |