|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Несобственные интегралы
Пусть функция определена при всех и интегрируема по Риману на каждом из отрезков . Положим Определение 1. (конечный или бесконечный) называют интегралом функции от до и обозначают символом Если этот предел конечен, то про интеграл говорят, что он сходится, а функцию называют интегрируемой в бесконечном промежутке . Если же бесконечен или вовсе не существует, то говорят, что несобственный интеграл расходится. В отличие от интеграла Римана, только что определенный интеграл называется несобственным интегралом первого рода. Теорема 1. Если функция обладает примитивной на промежутке , то интеграл сходится тогда и только тогда, когда существует конечный предел . Пример 1. Пусть . Несобственный интеграл сходится тогда и только тогда, когда Аналогично определяется интеграл функции от до Интеграл функции от до определяют равенством Определение 2. Пусть функция непрерывна во всех точках отрезка , за исключением точки , где она имеет разрыв ІІ рода (бесконечный разрыв). Положим
Этот интеграл называют несобственным интегралом ІІ рода. В первых двух случаях несобственный интеграл второго рода называется сходящимся, если пределы, указанные в его определении, конечны. Если эти пределы бесконечны или вовсе не существуют, то несобственный интеграл второго рода называется расходящимся. В третьем случае несобственный интеграл называется сходящим, если сходятся оба интеграла и, , указанные в его определении. В противном случае его называют расходящимся. Пример 2. Пусть . Несобственный интеграл второго рода сходится тогда и только тогда, когда Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |