|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Примитивная (первообразная)Если функция Далее буквой
где Для функции
Аналогичным образом определяется производная в концах промежутка Определение 1. Пусть Замечание1. Из Определения 1 следует, что примитивная некоторой функции на Пример 1. Для функции Пример 2. Для функции Пример 3. Для функции В связи с понятием первообразной возникают следующие вопросы: 1) Всякая ли функция имеет первообразную? 2) Для каких функций можно гарантировать существование первообразной? 3) Сколько первообразных может иметь одна и та же функция? Для ответа на первый вопрос на интервале
Функция Отсюда Ответ на второй вопрос дает Теорема 1 (О существовании первообразной). Если функция Ответ на третий вопрос содержится в следующей теореме. Теорема 2. Если
где Определение 2. Совокупность всех примитивных функций функции
Процедура определения примитивной, или неопределенного интеграла для функции Таблица интегралов. Используя таблицу производных, мы можем составить таблицу некоторых интегралов. Вот эта таблица: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. Все эти формулы проверяются непосредственным дифференцированием, т. е. производная от правой части формулы всегда равна подынтегральной функции в левой части. Отметим некоторые частные случаи формулы 1:
Упомянем ещё и такую очевидную формулу: Теперь дадим одно существенное дополнение к формуле 2. Функция 2'. то она будет справедливой в обоих промежутках
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |