|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Базис і розмірність векторного просторуОзначення. Б азисом векторного простору називається така впорядкована система векторів , що 1) вона лінійно незалежна; 2) кожен вектор простору лінійно виражається через вектори цієї системи, тобто . Означення. Векторний простір називається - вимірним, якщо в ньому існує базис з елементів. Число називається розмірністю простору і позначається . Простір скінченної розмірності називається скінченновимірним. Простір, в якому можна знайти будь-яке число лінійно незалежних векторів називається нескінченновимірним. Отже, розмірність векторного простору – це максимальне число лінійно незалежних векторів цього простору. Теорема (про зв'язок між базисом і розмірністю). Система векторів утворює в просторі розмірності базис тоді і тільки тоді, коли вона лінійно незалежна, а число векторів в ній дорівнює розмірності простору . 5. Координати вектора у векторному просторі. Розкладання вектора за базисом. Для того, щоб вектори з векторного простору можна було б задавати за допомогою чисел і зводити операції над векторами до операцій над числами, вводиться поняття координат вектора. Нехай – деякий базис векторного простору . Тоді будь-який вектор можна подати у вигляді (1): , де – деякі дійсні числа, причому єдиним чином. В цьому випадку вираз (1) називається розкладом вектора за базисом . Означення. Коефіцієнти розкладу (1) називаються координатами вектора в даному базисі. Упорядкований набір координат вектора називається його координатним рядком і позначається : . Таким чином, базис дає змогу кожен вектор однозначно зобразити рядком чисел – координат цього вектора. Це зображення дозволяє виконувати над векторами лінійні операції за правилами лінійних операцій над матрицями-рядками: якщо і в деякому базисі, то , . Разом із координатними рядками можна розглядати координатні стовпці , отримані транспонуванням -матриці . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |