|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
РЕГУЛИРОВАНИЕ ЧАСТОТЫ ВРАЩЕНИЯ СИНХРОННЫХ ДВИГАТЕЛЕЙ. ВЕНТИЛЬНЫЙ ДВИГАТЕЛЬ
Частота вращения синхронного двигателя п2 равна частоте вращающегося магнитного поля nl=60f1/p. Следовательно, ее можно регулировать путем изменения частоты питающего напряжения или числа полюсов 2р. Регулировать частоту вращения путем изменения числа полюсов в синхронном двигателе нецелесообразно, так как в отличие от асинхронного здесь требуется изменять число полюсов, как на статоре, так и на роторе, что приводит к значительному усложнению конструкции ротора. Поэтому практически используют лишь изменение частоты питающего напряжения. Принципы регулирования. К синхронному двигателю применимы все основные положения теории частотного регулирования асинхронного двигателя, в том числе необходимость одновременного изменения как частоты, так и питающего напряжения. Однако в чистом виде частотное регулирование частоты вращения синхронных двигателей применяется только при очень малых мощностях, когда нагрузочные моменты невелики, а инерция приводного механизма мала. При больших мощностях такие условия имеются только в некоторых типах электроприводов, например в электроприводах вентиляторов. Для синхронных двигателей, применяемых в электроприводах с большим моментом инерции приводного механизма, необходимо очень плавно изменять частоту питающего напряжения, чтобы двигатель не выпал из синхронизма. Особенно сложным является пуск в ход двигателя, когда начальная частота должна составлять доли герца, а затем постепенно повышаться до максимального значения. Для таких электроприводов наиболее пригоден метод частотного регулирования с самосинхронизацией, при котором двигатель в принципе не может выпасть из синхронизма. Вентильный двигатель. Принцип частотного регулирования с самосинхронизацией заключается в том, что управление преобразователем частоты осуществляется от системы датчиков положения ротора, вследствие чего напряжение подается на каждую фазу двигателя при углах нагрузки θ<90°. При таком регулировании автоматически обеспечиваются условия устойчивой работы двигателя и его перегрузочная способность определяется только перегрузочной способностью преобразователя частоты. Синхронные двигатели, регулируемые путем изменения частоты с самосинхронизацией, называют вентильными двигателями; иногда их называют бесколлекторными двигателями постоянного тока. Однако первое название является более правильным, так как эти двигатели могут получить питание от сети как постоянного, так и переменного тока. При питании вентильного двигателя от сети постоянного тока в преобразователе частоты должны применяться транзисторы или тиристоры с узлами принудительной коммутации. При питании вентильного двигателя от транзисторного преобразователя частоты, основанного на использовании автономного инвертора напряжения (рис. 10-9, а), преобразователь подключен к источнику постоянного тока и формирует трехфазное напряжение изменяющейся частоты, которое подается на фазы А, В и С обмотки якоря двигателя. К каждой фазе можно подвести положительное (транзисторами Т1, Т2 и ТЗ) и отрицательное (транзисторами Т4, Τ5 и Т6) напряжения.
Если сначала пропускать ток через фазы А и В (открыты транзисторы Т1 и ТУ), затем — через В и С (открыты транзисторы Т2 и Т6), потом — через фазы С и А (открыты транзисторы ТЗ и Т4) и другие в указанной последовательности, то в машине создается вращающееся магнитное поле. При изменении частоты переключения транзисторов изменяется частота переменного напряжения, подаваемого на фазы обмотки якоря, а следовательно, и частота вращения ротора. Для замыкания реактивной составляющей тока якоря в преобразователе имеются диоды D1 — D6, включенные параллельно транзисторам, но в обратном направлении. В тиристорном преобразователе (рис.10-9,б) переключение тока с одной фазы на другую требует применения в нем специальных коммутирующих узлов, так как тиристор является не полностью управляемым прибором. Для закрытия тиристора, включенного в цепь постоянного тока, необходимо кратковременно подать на него обратное напряжение определенного значения. В рассматриваемом преобразователе применены два узла принудительной (искусственной) коммутации — по одному для всех тиристоров, присоединяемых соответственно к положительному и отрицательному полюсам источника постоянного тока. Каждый узел состоит из контура L — С и вспомогательных тиристоров Т11, Т12 и Т21 — Т26. Закрытие тиристоров Т1, Т2 и ТЗ, присоединенных к положительному полюсу, производится контуром L1 — С1. При открытии вспомогательного тиристора Т11 конденсатор С1 заряжается через индуктивность L1 до двойного напряжения сети и запирает тиристор T11. З атем открываются вспомогательные тиристоры Т12, Т22 или Т23 и подают на тиристоры Т1, Т2 или ТЗ обратное (положительное) напряжение. При этом соответствующий тиристор запирается, а конденсатор С1 разряжается через нагрузку. Аналогично запираются тиристоры Т4, Т5 и Т6. Сначала открывается вспомогательный тиристор Т12 и через индуктивность L2 заряжает конденсатор С2. Затем открываются вспомогательные тиристоры Т24, Т25 или Т26 и присоединяются аноды тиристоров Т4, Т5 или Т6 к отрицательной обкладке конденсатора С2. Напряжение, подаваемое к якорю вентильного двигателя от преобразователя частоты, является, так же как и при частотном регулировании асинхронного двигателя, несинусоидальным. Поэтому, чтобы уменьшить вредные воздействия высших гармонических напряжения, тока и потока, двигатель необходимо снабдить мощной демпферной обмоткой с малыми активными и индуктивными сопротивлениями. В этом случае высшие гармонические оказывают на синхронный двигатель сравнительно небольшое воздействие. При наличии такой обмотки режимы работы вентильного двигателя можно рассматривать с учетом только первых гармонических тока и напряжения. Режим работы вентильного двигателя зависит не только от силы тока возбуждения и соотношения между напряжением и частотой. Большое значение имеют также моменты подачи напряжения на фазы двигателя и параметры преобразователя частоты. При необходимости питания вентильного двигателя от сети трехфазного тока можно применять преобразователи частоты с непосредственной связью, т. е. без промежуточного выпрямителя. Преимущество таких преобразователей — отсутствие узлов принудительной коммутации, так как тиристоры перестают проводить ток после изменения направления напряжения в соответствующей фазе Ас, Вс, Сс источника трехфазного тока. Однако достаточно хорошее приближение формы выходного напряжения к синусоиде и четкое прекращение тока (в необходимый момент) можно получить только в том случае, если источник трехфазного тока имеет частоту в 2...3 раза большую, чем выходная частота преобразователя. Вентильные двигатели, как и асинхронные двигатели с частотным регулированием, являются весьма перспективными. В настоящее время происходит быстрое совершенствование мощных тиристоров, интегральных схем и других полупроводниковых приборов, которое позволит обеспечить надежную работу преобразователя частоты.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.) |