|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
КОЭФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ТРАНСФОРМАТОРАПри передаче энергии из первичной обмотки во вторичную возникают электрические потери мощности в активных сопротивлениях первичной и вторичной обмоток ΔРэл1 иΔРэл2, а также магнитные потери в стали магнитопровода Δ Р м(от вихревых токов и гистерезиса). Энергетическая диаграмма. Процесс преобразования энергии в трансформаторе характеризует энергетическая диаграмма (рис. 3-9). В соответствии с этой диаграммой мощность, отдаваемая трансформатором нагрузке, (3-21) где Р 1—мощность, поступающая из сети в первичную обмотку. Мощность Р эм = Р 1 - Δ Р эл1 - Δ Рм, поступающую во вторичную обмотку, называют внутренней электромагнитной мощностью трансформатора. Она определяет габаритные размеры и массу трансформатора. Коэффициент полезного действия. Коэффициентом полезного действия трансформатора называют отношение отдаваемой мощности Р 2к мощности Р 1: или (3-22) где Δ Р —суммарные потери в трансформаторе. Высокие значения КПД трансформаторов не позволяют определять его с достаточной степенью точности путем непосредственного измерения мощностей Р 1и Р 2, поэтому его вычисляют косвенным методом по значению потерь мощности. С учетом энергетической диаграммы формулу (3-22) можно представить в виде (3-33)
Согласно требованиям ГОСТа потери мощности в трансформаторе определяют по данным опытов холостого хода и короткого замыкания. Получаемый при этом результат имеет высокую точность, так как при указанных опытах трансформатор не отдает мощность нагрузке. Следовательно, вся мощность, поступающая в первичную обмотку, расходуется на компенсацию имеющихся в нем потерь. При опыте холостого хода ток I 0 невелик и электрическими потерями мощности в первичной обмотке можно пренебречь. В то же время магнитный поток практически равен потоку при нагрузке, так как его значение определяется приложенным к трансформатору напряжением. Магнитные потери в стали пропорциональны квадрату значения магнитного потока. Следовательно, с достаточной точностью можно считать, что магнитные потери в стали магнитопровода равны мощности, потребляемой трансформатором при холостом ходе и номинальном первичном напряжении, т. е. (3-34) Для определения суммарных электрических потерь согласно упрощенной схеме замещения полагают, что I' 2 = I 1. При этом (3-35) или (3-36) где ΔРэл.ном — суммарные электрические потери при номинальной нагрузке. Величину можно с достаточной степенью точности принять равной мощности Рк, потребляемой трансформатором при опыте короткого замыкания, который проводится при номинальном токе нагрузке. При этом магнитные потери в стали АРМ весьма малы по сравнению с потерями ΔРэл из-за сильного уменьшения напряжения U 1 а следовательно, и магнитного потока трансформатора и ими можно пренебречь. Таким образом, Полные потери Подставляя полученные значения Р в (3-33) и учитывая, что находим
(3-37) Эта формула рекомендуется ГОСТом для определения КПД трансформатора.
Зависимость КПД от нагрузки. По (3-37) можно построить зависимость КПД от нагрузки (рис. 3-10, а). При β = 0 полезная мощность и КПД равны нулю. С увеличением отдаваемой мощности КПД увеличивается, так как в энергетическом балансе уменьшается удельное значение магнитных потерь в стали, имеющих постоянное значение. Принекотором значении (βопт кривая КПД достигает максимума, после чего начинает уменьшаться с увеличением нагрузки. Причиной этого является сильное увеличение электрических потерь в обмотках, возрастающих пропорционально квадрату тока, т. е. Рис. 3-10. Зависимости КПД трансформатора η от нагрузки β
пропорционально β2, в то время как полезная мощность Р 2возрастает пропорционально β. Максимальное значение КПД в трансформаторах большой мощности достигает весьма высоких пределов (0,98...0,99). Оптимальный коэффициент нагрузки βопт, при котором КПД имеет максимальное значение, можно определить, взяв первую производную dη/dβ по формуле (3-37) и приравняв ее нулю. При этом (3-38) Следовательно, КПД имеет максимум при такой нагрузке, при которой электрические потери в обмотках равны магнитным потерям в стали. Это условие (равенство постоянных и переменных потерь) приближенно справедливо и для других типов электрических машин. Для серийных силовых трансформаторов (3-39) Указанные значения Ропт получены при проектировании трансформаторов на минимум приведенных затрат (на их приобретение и эксплуатацию). Наиболее вероятная нагрузка трансформатора соответствует β = 0,5...0,7. В трансформаторах максимум КПД выражен сравнительно слабо, т. е. он сохраняет высокое значение в довольно широком диапазоне изменения нагрузки (0,4<β<1,5). При уменьшении cos φ2 КПД снижается (рис. 3-10, б), так как возрастают токи I 2 и I 1, при которых трансформатор имеет заданную мощность Р2. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |