|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Расчет коротких балок на упругом основании. Функции Крылова
Рис. 17.8
Значительно более сложным оказывается решение для коротких балок, когда требуется учесть условия на обоих концах балки. К таким балкам относится, например, рельсовый путь на шпалах (рис.17.8). Для коротких балок нельзя использовать решения, полученные для балок бесконечной длины и требуется исходить из общего интеграла (17.9), содержащего четыре произвольные постоянные интегрирования. Для решения обычно пользуются нормальными фундаментальными функциями уравнения (17.5). Эти функции называемые функциями Крылова, являются решениями однородного уравнения (17.5) и удовлетворяют специальным условиям при x = 0. Cоставим следующую таблицу, в которой сведены начальные значения функций Крылова и их производных: . (17.34) Так как во всех клетках этой таблицы стоят нули, лишь на главной диагонали единицы, то система частных решений Uk , называется системой с единичной матрицей. Эти решения суть: . (17.35) Следует отметить, что производные функций Крылова (17.35) выражаются снова через те же функции, причем: . (17.36) Таким образом, общий интеграл уравнения (17.9) может быть представлен через функции Крылова: . (17.37) Постоянные интегрирования C 1 , C 2 , C 3 , C 4имеют здесь совершенно определенный смысл. Действительно, если положить x = 0, и воспользоваться свойством (17.34) введенных функций, получим: (17.38) Таким образом: . (17.39) Формула (17.39) представляет общий интеграл уравнения (17.5). Постоянные интегрирования имеют здесь простой смысл: это начальные (при x = 0) значения искомой функции и ее производные. Поэтому, метод интегрирования дифференциальных уравнений, основанный на формуле (17.39), и широко применяемый в строительной механике, называетсяметодом начальных параметров. Согласно метода начальных параметров, балка разбивается на участки. Подставив (17.38) в (17.39), получим функцию прогибов на I участке балки: . (17.40) Пользуясь приведенными в (17.36) правилами дифференцирования от функций прогибов (17.40) переходим к углам поворота и далее по формулам (17.25), (17.26) к внутренним усилиям на I участке: ; (17.41) ; (17.42) . (17.43) Функцию продолжаем на второй и последующие участки. Приращения этой функции будут зависеть от приращений внутренних сил , и интенсивности нагрузки на границах между участками . Добавляя эти приращения к функции прогибов, углов поворота, изгибающих моментов и поперечных сил, получим универсальные формулы: ; (17.44) ; (17.45) ; (17.46) , (17.47) здесь для краткости обозначено ; - абсцисса i- ой границы между участками. Как и в обычной балке, в начале координат часть начальных параметров бывает известна, а остальные определяются из граничных условий, формируемых для противоположного конца стержня. С целью облегчения вычислений при выполнении практических расчетов балок на упругом основании в таблице 17.7 приводятся значения тригонометрических, гиперболических функций и функций Крылова при заданном аргументе.
Таблица 17.7 Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |