|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ФОРМУЛА ПУАЗЕЙЛЯ
Выделим в потоке цилиндрический слой длиной l, радиусом r и толщиной dr (рис. 9). Радиус r будем измерять от осевой линии к периферии. Понятно, что слои примыкающие к неподвижным стенкам трубы будут течь медленнее, чем жидкость в середине потока. В силу этого, внутреннее трение, действующее на боковую поверхность выделенного слоя, будет равно:
где S = 2πr l – боковая поверхность цилиндрического слоя, dυ/dr – градиент скорости в области поверхности соприкосновения цилиндра с внешними более медленными слоями жидкости. Знак минус означает, что при возрастании радиуса слоя его скорость уменьшается. Для установившегося течения сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается силами давления, действующими на его основания: Fтр = Fр или
Полагая, что у стенок (на расстоянии R от оси) имеет место полное прилипание жидкости, т.е. скорость равна нулю, получим для выделенного слоя:
Объем жидкости, протекающей через поперечное сечение трубы за 1 с (расход жидкости, объёмная скорость течения) будет определяться соотношением:
Это выражение была установлено эмпирически Гагеном (1839 г.) и Пуазейлем (1840 г.) независимо друг от друга и носит название формулы Пуазейля. Величина
где Δр играет роль напряжения, Q – силы тока, а Z – сопротивления. Из закона Пуазейля следует, что падение давления крови в сосудах (Δр = QZ = 8η l Q/πR4) обратно пропорционально R4. Не случайно, основные фармакологические средства нормализации давления направлены, прежде всего, на изменение просвета сосудов (так, нитроглицерин расслабляет мышцы артериальных стенок). Границы применимости формулы Пуазейля: 1) ламинарное течение; 2) гомогенная жидкость; 3) прямые жесткие трубки; 4) удаление от источников возмущений (изгибов, сужений, входа, выхода и т.д.). Формула Пуазейля (12) лежит в основе многих методов определения вязкости жидкостей.
Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.157 сек.) |