АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Частица и волна, связанная с ней

Читайте также:
  1. Группа причин, связанная с положением сварки, в основном определяется комплексом, сил, действующих на каплю расплавленного металла при её переносе в сварочную ванну.
  2. Как и любая волна, звук характеризуется амплитудой и частотой.
  3. Классификация ОДН, связанная с патологией системы внешней вентиляции (легочные причины ОДН)
  4. Классификация реакций по реагирующим частицам
  5. Свободная частица. Частица в одномерной потенциальной яме. Квантование энергии и импульса частицы. Принцип соответствия Бора.
  6. Состав ядер. Общие сведения об элементарных частицах. Ядерные силы. Дефект массы. Энергия связи
  7. Тема 8. Недобросовестная конкуренция, связанная с использованием информации
  8. Частица в потенциальной яме
  9. Частица в яме конечной глубины

 

В чем же в основном заключалась задача? По существу в установлении определенного соответствия между распространением некоей волны и движением частицы, причем величины, описывающие волну, должны быть связаны с динамическими характеристиками частицы соотношением, которое содержит постоянную Планка h. При том желательно установить это соответствие таким образом, чтобы общие правила, выражающие связь волны и частицы, примененные к фотону, давали хорошо известные и проверенные соотношения Эйнштейна между фотоном и световой волной.

Прежде чем приступить к решению этой задачи, было естественно рассмотреть самый простой случай: задачу о равномерном и прямолинейном движении частицы с заданными постоянными значениями энергии и импульса. Из соображений симметрии следовало сопоставить ей волну, распространяющуюся в том же направлении. Теперь оставалось только определить, как связаны между собой частота и длина этой волны с динамическими характеристиками частицы. Аргументы, основанные на общих принципах теории относительности, приводят к следующему результату: частота волны, связанной с движущейся частицей, равна энергии частицы, деленной на постоянную Планка, а длина волны – частному от деления постоянной Планка на импульс частицы. Такая связь между частицей и соответствующей ей волной обладает еще и тем большим преимуществом, что она в точности совпадает с соотношением Эйнштейна для фотона и световой волны. Так был осуществлен знаменитый синтез, ибо оказалось, что для частиц материи и для света установлен один и тот же вид дуализма.

Есть еще один, совершенно независимый путь, который ведет к такому же способу установления связи между частицей и соответствующей ей волной. Мы уже говорили, что теория Якоби очень прозрачно намекает на идею о сходстве траекторий частиц с лучом некоей волны, отождествляя интеграл действия частицы с волновым интегралом Ферма, так что принцип наименьшего действия совпадает с принципом минимального времени. Если выполнить эту операцию, то мы снова тут же находим, что, с одной стороны, энергия пропорциональна частоте, с другой стороны, импульс обратно пропорционален длине волны. Остается только положить коэффициент пропорциональности равным h (что совершенно естественно и согласуется с идеей объединения этих двух сторон дуализма посредством кванта действия), чтобы снова получить соотношение, уже установленное с помощью теории относительности. Эта новая цепочка рассуждений нигде явно не обращается к понятиям теории относительности. Поэтому она может быть целиком развита в рамках ньютоновой динамики.

Из этих основных результатов легко вывести самое важное следствие, касающееся соотношения между скоростью частицы и скоростью связанной с ней волны. В волновой теории наряду с монохроматическими волнами данной частоты рассматриваются также волновые пакеты, представляющие собой совокупность различных монохроматических волн. Среди этих пакетов интересно рассмотреть те, которые образовались наложением монохроматических волн с частотами, лежащими внутри небольшого спектрального интервала вблизи основной частоты. В действительности, монохроматические волны – это абстракция, никогда не реализующаяся на практике. То, что мы называем монохроматическими волнами, всегда представляет собой группу волн, заполняющих небольшой спектральный интервал. Если изучать распространение волнового пакета в таких условиях, когда скорость распространения монохроматических волн есть функция их частоты, то оказывается, что группа волн в целом обладает скоростью, отличной от скорости распространения отдельных волн, составляющих эту группу. Эта групповая скорость определяется средней частотой группы волн и зависит от изменения индивидуальных волновых скоростей с изменением частоты. Указанная зависимость дается формулой Рэлея – знаменитого английского физика, впервые указавшего на это свойство. Можно попытаться применить эту теорию групповой скорости к волне, связанной с частицей, а затем установить соответствие между движущейся прямолинейно и равномерно частицей, обладающей заданной энергией, и распространением в том же направлении группы волн, средняя частота которых равна этой энергии, деленной на h. Применяя формулу Рэлея, мы видим тогда, что скорость волнового пакета равна скорости, которую классическая механика приписывает рассматриваемой частице. Это замечательное совпадение знаменательно, ибо оно означает, что частица в процессе движения остается связанной со своей группой волн. Но сверх того, общая теория колебаний гласит, что групповая скорость есть не что иное, как скорость переноса энергии волнами. Поскольку в нашей дуалистической концепции энергия приписывается частице, то естественно, что групповая скорость связанных с частицей волн должна быть равна скорости частицы.

Эти первые удовлетворительные результаты еще не полны. Они установлены пока только для очень специального случая прямолинейного равномерного движения частицы в отсутствии внешнего поля. Однако не составляет особого труда обобщить эти результаты. Рассмотрим, например, движение частицы в постоянном поле. Теория Якоби предлагает рассматривать траектории частиц как лучи распространения некоторых волн. Отождествляя принцип наименьшего действия и принцип Ферма, снова приходим к тому же соотношению, связывающему частицу с ее волной: энергия (постоянная) частицы равна частоте волны, умноженной на h, а импульс частицы, который меняется в поле сил от точки к точке, равен постоянной h, деленной на длину соответствующей волны, подобным же образом меняющуюся в пространстве. Можно и дальше обобщить эти результаты, рассмотрев случаи, когда поля зависят от времени. В этом случае снова обнаружим, что соотношения между динамическими характеристиками частицы и частотой и длиной связанной с ней волны остаются теми же самыми.

Обобщая таким образом параллелизм между частицей и связанной с ней волной, мы идем по правильному пути. Действительно, если мы рассмотрим, как ведут себя внутри атома Бора волны, связанные с электронами, придем к пониманию внутреннего смысла условий квантования: связанная с электроном волна оказывается резонансной как раз на длине его траектории. Иными словами, волна, соответствующая стационарному состоянию атомного электрона, сама стационарна в смысле теории колебаний.

Чтобы осознать действительную важность этого результата, напомним кратко, что такое стоячая стационарная волна. Если в ограниченной среде могут распространяться волны какого угодно сорта, то в ней устанавливаются стоячие волны, т.е. такие колебания, конфигурация которых в пространстве не меняется с течением времени. Форму этих колебаний можно сразу определить из характера уравнения, описывающего распространение, волны, геометрии границ среды и условий на этих границах. Например, часто бывает, что условия на границах среды требуют, чтобы колебания на этих границах обращались в нуль (колеблющиеся струны с закрепленными концами, радиоантенны, изолированные на обоих концах и т.д.). В этом случае мы должны искать решения волнового уравнения, периодические во времени и обращающиеся в нуль на границах среды; их амплитуды везде должны быть конечными, однозначно определенными и непрерывными внутри среды. Нахождение этого решения представляет собой математическую задачу о собственных значениях уравнения в частных производных для определенной области пространства и определенных граничных условий. Всем физикам известно много простых примеров такого рода решений. Это, например, упругие стоячие волны, возникающие в колеблющейся струне с закрепленными концами, частота которых кратна основной частоте, или стоячие электромагнитные волны в антенне, изолированной на одном конце с заземленным другим; стоячие волны, длины которых равны учетверенной длине антенны, деленной на последовательные нечетные целые числа.

Применение только что рассмотренной теории колебаний к атому требует, чтобы мы считали стационарные боровские состояния соответствующими стационарным волнам, связанным с атомными электронами.

Несомненно, что такая интерпретация проливает свет на истинный смысл условий квантования и делает весьма вероятным уточнение основных идей, которые мы обрисовали выше, и того пути, по которому они привели нас к взаимосвязи волн и частиц. Однако для лучшего понимания материала последующих глав необходимо особо подчеркнуть две трудности.

Первая возникает, когда мы хотим убедиться в стационарном характере волн, связанных со стационарным состоянием атома, и пользуемся при этом формулой, сопоставляющей движение частицы распространению волны в смысле геометрической оптики. По существу, переводя на квантовый язык идеи, хорошо известные в аналитической механике, мы устанавливаем соответствие между траекториями частицы, какими их представляем себе классически, и лучами, по которым распространяются волны. Мы уже отмечали, что геометрическая оптика с точки зрения волновых представлений – лишь первое приближение, справедливое в том случае, когда волны распространяются свободно, не встречая никаких препятствий, и когда, кроме того, скорость распространения не меняется слишком быстро от точки к точке. Теперь уже легко видеть, что второе условие для волн, связанных с электроном внутри атома, конечно, не выполняется. Следовательно, путь, каким мы пришли к стационарному характеру волны, отвечающей стационарному состоянию атома, нельзя признать строгим.

Избежать этого можно, лишь получив уравнение распространения волны, связанной с электроном, и решив задачу о собственных значениях для волн внутри атома, которая при этом возникает.

Однако необходимо особо подчеркнуть главную идею, содержащуюся в предыдущем рассуждении. Эта важная идея заключается в следующем: так как геометрическая оптика есть только приближение, верное в определенных условиях, и соответствие установлено между классической динамикой и распространением волн по законам геометрической оптики, то вполне возможно, что классическая динамика тоже лишь приближение, имеющее те же пределы применимости, что и геометрическая оптика, перефразировкой которой она, в известном смысле, является.

Во всех случаях, когда волна, связанная с частицей, распространяется не по законам геометрической оптики (а мы уже видели, что это бывает как раз в случае волн, связанных с электронами в квантованных атомных системах), динамическое поведение частицы нельзя описывать, исходя из понятий и законов классической механики. Именно поэтому механику Ньютона и даже механику Эйнштейна нужно впредь называть старой механикой, и необходимо создать новую, в рамках которой эта старая будет первым приближением, справедливым в определенных условиях. Короче говоря, возникла необходимость, как мы писали в те годы, создать новую механику волнового характера, которая будет относиться к старой механике, как волновая оптика к геометрической оптике. Точно и тщательно эта идея была осуществлена в бессмертной работе Шредингера.

В чем же заключается вторая трудность? Прежде чем перейти к существу дела, рассмотрим в качестве простого примера систему, в которой возникают стационарные волны, – струну с закрепленными концами. В такой струне может возбуждаться бесконечное число стоячих волн. Случай, когда струна несет только одно стационарное колебание, т.е. когда она движется строго по синусоиде, исключительный. Обычно струна после нескольких начальных колебаний начинает двигаться по очень сложному закону за исключением ее концов, которые, естественно, не двигаются вообще. Однако математическая теория рядов Фурье гласит, что движение струны, каким бы сложным оно ни было, может быть представлено в виде суммы стационарных колебаний. Математически этот результат выражают следующим образом: синусоидальные функции, описывающие отдельные стационарные волны, образуют полную систему ортогональных функций. Этот результат можно обобщить на случай систем более сложных, чем струна с закрепленными концами. Можно показать, что если в какой‑либо области пространства возникают стационарные колебания, то, какова бы ни была их форма, ее можно представить в виде суперпозиции некоторого числа (конечного или бесконечного) стационарных колебаний.

Применение этих общих идей к квантованным атомным системам сразу же приводит к упомянутой трудности. По первоначальным представлениям Бора атом всегда находится в том или ином стационарном состоянии. При этом предполагается дискретность, как раз и означающая квантование. Такой взгляд ни в чем не противоречит классической картине состояния атома. Однако если предположить, что стационарное состояние соответствует стационарным колебаниям, то общая теория, которую мы только что бегло описали, приводит к такому выводу: состояние атома в данный момент времени может свестись к единственному стационарному состоянию только в исключительных случаях. В общем же случае оно представляет собой наложение определенного числа стационарных состояний. Можно сказать, что с точки зрения классических представлений такое утверждение лишено всякого смысла, ибо невозможно себе представить, что атом может в один и тот же момент времени находиться в нескольких состояниях. Эта трудность показывает, что развитие новой механики претендует на глубокую перестройку основных понятий классической физики, перестройку, необходимость которой, как мы уже говорили, в зародыше содержится уже в самом существовании кванта действия. И только вероятностная интерпретация новой механики позволит нам скоро придать суперпозиции нескольких состояний физический смысл.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)