|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Схема и цикл с полным промежуточным охлаждением и однократным дросселированиемВ схему холодильной машины, представленной на рисунке 5.5. для промежуточного охлаждения включен специальный промежуточный сосуд со змеевиком. Цикл в S – T и h – Р диаграммах показан на том же рисунке. Перегретый пар холодильного агента после испарителя поступает на всасывание в ступень низкого давления, где сжимается в процессе 1 – 2 от давления кипения Ро до промежуточного давления Рпр. Сжатый пар из ступени низкого давления направляется в промежуточный охладитель, где охлаждается в процессе 2 – 3 внешней охлаждающей средой (водой или воздухом) до температуры, близкой к температуре конденсации, т.е. Т3 ≈ Тк. Затем предварительно охлажденный пар подается по трубопроводу в нижнюю часть промежуточного сосуда под слой жидкого холодильного агента, температура которой равна промежуточной температуре Тпр. Пузырьки пара поднимаются вверх (барбатируются) сквозь толщу жидкости и одновременно охлаждаются в процессе 3 – 4 за счет тепломассообмена с жидким холодильным агентом. Теоретически считается, что при этом происходит идеальный теплообмен, в результате которого пар хладагента охлаждается до промежуточной температуры, т.е. Т4 = Тпр. После промсосуда охлажденный пар всасывается ступенью высокого давления, где сжимается в процессе 4 – 5 от промежуточного давления Рпр до давления конденсации Рк. Сжатый горячий пар из ступени высокого давления поступает в конденсатор, в котором сначала охлаждается а потом конденсируется в процессе 5 – 6 при постоянном давлении конденсации Рк. Образовавшаяся жидкость перед промсосудом делится на два потока. Меньшая часть жидкости дросселируется во вспомогательном дроссельном устройстве в процессе 6 – 7 и поступает в промежуточный сосуд для пополнения и поддержания в нем постоянного уровня жидкого холодильного агента. Основной поток проходит по змеевику промежуточного сосуда и охлаждается в процессе 6 – 8 за счет теплообмена с жидким холодильным агентом, который находится в промсосуде. Температура охлажденной жидкости, выходящей из змеевика промсосуда, на (2-3) оС выше промежуточной температуры, т.е. Т8 = Тпр + (2 - 3) оС. Далее охлажденный жидкий хладагент дросселируется в основном дроссельном устройстве в процессе 8 – 9 от давления конденсации Рк до давления Рисунок 5.5. Схема и цикл с полным промежуточным охлаждением и однократным дросселированием Удельная холодопроизводительность цикла (количество теплоты, подведенной к 1 кг холодильного агента в испарителе):
qо = h1' – h9.
Удельная тепловая нагрузка конденсатора:
qк = h5 – h6.
Удельная работа сжатия в ступенях низкого и высокого давления: lс.н = h2 – h1, lс.в = h5 - h4.
Массовая производительность ступени низкого давления: Массовая производительность ступени высокого давления Gа.в находится из теплового баланса промежуточного сосуда, который имеет вид: ; Тогда имеем: Полный тепловой поток в конденсаторе: Теоретическая потребляемая мощность в низкой и высокой ступенях сжатия: Общая потребляемая мощность в ступенях низкого и высокого давлений: Nт = Nт.н + Nт.в Теоретический холодильный коэффициент: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |