АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Тепловой расчет простейшей АВХМ

Читайте также:
  1. D. Акустический расчет
  2. I. Расчет номинального значения величины тока якоря.
  3. I. Расчет режимов резания на фрезерование поверхности шатуна и его крышки.
  4. I. Расчет тяговых характеристик электровоза при регулировании напряжения питания ТЭД.
  5. I: Кинематический расчет привода
  6. II. Расчет и выбор электропривода.
  7. II. Расчет номинального значения величины магнитного потока.
  8. II. Расчет силы сопротивления движению поезда на каждом элементе профиля пути для всех заданных скоростях движения.
  9. II: Расчет клиноременной передачи
  10. III. Методика расчета эффективности электрофильтра.
  11. III. Расчет и построение кривой намагничивания ТЭД.
  12. III.Расчет допускаемых напряжений изгиба и контактных напряжений.

Пренебрегая тепловым эквивалентом работы насоса, тепловой баланс:

Допустим в конденсаторе конденсируется G (кг/с) пара, а в генератор поступает F (кг/с) крепкого раствора. Тогда количество слабого раствора на выходе из генератора составит (G–F) кг/с. Это же количество раствора поступает в абсорбер, где в результате поглощения G пара из испарителя образуется F крепкого раствора. Если пренебречь тепловым моментом работы насоса, то тепловой баланс машины можно записать так:

Тепловой баланс машины, отнесенный к одному кг пара, сконденсированного в конденсаторе, можно написать так:

Если расход раствора, циркулирующего через абсорбер и генератор, отнести к расходу пара, конденсирующегося в конденсаторе, то получим кратность циркуляции (кг/кг).

Материальный баланс генератора по аммиаку может быть записан в виде равенства:

;

где – количество аммиака, поступающего с крепким раствором; – количество аммиака, отводимое с 1 кг пара; – количество аммиака, отводимое со слабым раствором. Отсюда:

;

Для определения удельных тепловых потоков составим тепловые балансы аппаратов:

Тепловой баланс генератора:

Отсюда:

В испарителе кипит 1 кг вещества. Количество подведенной от внешнего охлаждаемого источника теплоты может быть определено как разность значений энтальпий вещества на выходе из аппарата и на входе в него:

Тепловой баланс машины, отнесенный к 1 кг пара, сконденсированного в конденсаторе, можно написать так:

Количество отведенной теплоты в конденсаторе определяется разностью значений энтальпий в начале и конце процесса конденсации. Так как в аппарате сжижается 1 кг пара, то:

;

В абсорбер поступает (f–1) кг слабого раствора из генератора с энтальпией и 1 кг влажного пара из испарителя с энтальпией . Выходит из аппарата f крепкого раствора с энтальпией . Из теплового баланса аппарата:

Тепловой эквивалент работы насоса:

Насос водоаммиачного раствора перекачивает f жидкости из абсорбера в генератор. Определив удельный объем раствора можно подсчитать работу насоса:

где давление конденсации и кипения.

Тепловой коэффициент тепловой машины: .


 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)