|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Понятие функционального ряда и степенного рядаОбычный числовой ряд, вспоминаем, состоит из чисел: Все члены ряда – это ЧИСЛА. Функциональный же ряд состоит из ФУНКЦИЙ: В общий член ряда помимо многочленов, факториалов и других подарков непременно входит буковка «икс». Выглядит это, например, так: . Как и числовой ряд, любой функциональный ряд можно расписать в развернутом виде: Как видите, все члены функционального ряда – это функции. Наиболее популярной разновидностью функционального ряда является степенной ряд. Определение: Степенной ряд – это ряд, в общий член которого входят целые положительные степени независимой переменной . Упрощенно степенной ряд во многих учебниках записывают так: , где – это старая знакомая «начинка» числовых рядов (многочлены, степени, факториалы, зависящие только от «эн»). Простейший пример: Посмотрим на это разложение и еще раз осмыслим определение: члены степенного ряда содержат «иксы» в целых положительных (натуральных) степенях. Очень часто степенной ряд можно встретить в следующих «модификациях»: или , где – константа. Например: Строго говоря, упрощенные записи степенного ряда , или не совсем корректны. В показателе степени вместо одинокой буквы «эн» может располагаться более сложное выражение, например: Или такой степенной ряд: Лишь бы показатели степеней при «иксАх» были натуральными.
Сходимость степенного ряда. Не нужно пугаться такого обилия терминов, они идут «рядом друг с другом» и не представляют особых сложностей для понимания. Лучше выберем какой-нибудь простой подопытный ряд и сразу начнём разбираться. Прошу любить и жаловать степенной ряд . Переменная может принимать любое действительное значение от «минус бесконечности» до «плюс бесконечности». Подставим в общий член ряда несколько произвольных значений «икс»: Очевидно, что, подставляя в то или иное значение «икс», мы получаем различные числовые ряды. Некоторые числовые ряды будут сходиться, а некоторые расходиться. И наша задача найти множество значений «икс», при котором степенной ряд будет сходиться. Такое множество и называется областью сходимости ряда. Для любого степенного ряда (временно отвлекаемся от конкретного примера) возможны три случая: 1) Степенной ряд сходится абсолютно на некотором интервале . Иными словами, если мы выбираем любое значение «икс» из интервала и подставляем его в общий член степенного ряда, то у нас получается абсолютно сходящийся числовой ряд. Такой интервал и называется интервалом сходимости степенного ряда. Радиус сходимости, если совсем просто, это половина длины интервала сходимости: Геометрически ситуация выглядит так: В данном случае, интервал сходимости ряда: , радиус сходимости ряда: Широко распространен тривиальный случай, когда интервал сходимости симметричен относительно нуля: > Здесь интервал сходимости ряда: , радиус сходимости ряда: А что будет происходить на концах интервала ? В точках , степенной ряд может, как сходиться, так и расходится, и для выяснения этого необходимо проводить дополнительное исследование. После такого исследования речь идёт уже об области сходимости ряда: – Если установлено, что степенной ряд расходится на обоих концах интервала, то область сходимости ряда совпадает с интервалом сходимости: – Если установлено, что степенной ряд сходится на одном конце интервала и расходится на другом, то область сходимости ряда представляет собой полуинтервал: или . – Если установлено, что степенной ряд сходится на обоих концах интервала, то область сходимости ряда представляет собой отрезок: Термины очень похожи, область сходимости ряда – это чуть более детализированный интервал сходимости ряда. С двумя оставшимися случаями всё короче и проще: 2) Степенной ряд сходится абсолютно при любом значении . То есть, какое бы значение «икс» мы не подставили в общий член степенного ряда – в любом случае у нас получится абсолютно сходящийся числовой ряд. Интервал сходимости и область сходимости в данном случае совпадают: . Радиус сходимости: . Рисунок приводить не буду, думаю, нет необходимости. 3) Степенной ряд сходится в единственной точке. Если ряд имеет вид , то он будет сходиться в единственной точке . В этом случае интервал сходимости и область сходимости ряда тоже совпадают и равны единственному числу – нулю: . Если ряд имеет вид , то он будет сходиться в единственной точке , если ряд имеет вид , то, понятно, – в точке «минус а». Радиус сходимости ряда во всех случаях, естественно, нулевой: . Других вариантов нет. Область сходимости степенного ряда – это всегда либо единственная точка, либо любое «икс», либо интервал (возможно полуинтервал, отрезок). Подчеркиваю, что данная классификация справедлива для степенных рядов. Для произвольного функционального ряда она в общем случае является неверной.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |