АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Необходимый признак сходимости ряда

Читайте также:
  1. Адаптивные сайты имеют высокий приоритет у поисковиков, в сравнении с обычными сайтами, так как это необходимый тренд времени.
  2. Анализ ассортимента по классификационным признакам
  3. Анализ клинических признаков болезни.
  4. Антонимы, выражающие противоположную направленность действий, свойств и признаков.
  5. Ароматерапия — эстетическая методика. Чувство меры – признак высокого вкуса.
  6. Ассоциативная языковая метафора признаковая
  7. Б. Другие признаки беспокойства
  8. В57. Существенные признаки кризиса полиса в IV веке до н.э. (в социально-экономической, политической и идеологической областях).
  9. Взаимодействие признаков, сцепленных с полом.
  10. Виды кредита и их классификация по различным признакам
  11. Визуальная психодиагностика криминальных признаков личности
  12. Гемартроз коленного сустава: причины, клинические признаки, дифференциальная диагностика, лечение.

Я не буду записывать сам признак (его можно найти в любом учебнике), а сформулирую очевидное следствие:

Если общий член ряда не стремится к нулю, то ряд расходится

Или короче: Если , то ряд расходится.

В качестве «динамической» переменной вместо «икса» у нас выступает , но это никак не влияет на само понятие предела и не сказывается на методах решения пределов. Различия есть теоретические, и различия есть в терминах. Пределы с «иксом» называют пределами функций, а пределы с переменной «эн» называют пределами числовых последовательностей. Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но, как я уже отметил, данный факт никак не сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод: ряд расходится, так как не выполнен необходимый признак сходимости ряда.

Необходимый признак сходимости ряда довольно часто встречается в практических заданиях:

Пример 6

Исследовать ряд на сходимость

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений, наверняка уловил, что когда старшие степени числителя и знаменателяравны, тогда предел равенконечному числу.

Решаем:


Делим числитель и знаменатель на

Исследуемый ряд расходится, так как не выполнен необходимый признак сходимости ряда.

Готово.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли общий член к нулю? Если не стремится – оформляем решение по образцу примеров №№6,7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров №№6,7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя. Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым? Потому-что, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится. Или так: для того, чтобы ряд сходился, необходимо, чтобы его общий член стремился к нулю; но этого еще – не достаточно. Если общий член ряда стремится к нулю, то ряд может, как сходиться, так и расходиться! В таких случаях для решения примеров нужно использовать другие признаки.

Знакомьтесь:

Данный ряд называется гармоническим рядом. Пожалуйста, запомните! В теории рядов гармонический ряд является чуть ли не «аксиомой».

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится.

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма, например, ряда , важен сам факт, что он сходится.

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)