|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Признак сходимости ДаламбераЖан Лерон Даламбер – это знаменитый французский математик 18-го века. Вообще, Даламбер специализировался на дифференциальных уравнениях и на основании своих исследований занимался баллистикой, чтобы у Его Величества лучше летали пушечные ядра. Заодно и про числовые ряды не забыл, не зря потом шеренги наполеоновских войск так четко сходились и расходились. Перед тем как сформулировать сам признак, рассмотрим важный вопрос: Сначала начнем с повторения. Вспомним случаи, когда нужно применять самый ходовой предельный признак сравнения. Предельный признак сравнения применяется тогда, когда в общем члене ряда: Основные же предпосылки для применения признака Даламбера следующие: 1) В общий член ряда («начинку» ряда) входит какое-нибудь число в степени, например, , , и так далее. Причем, совершенно не важно, где эта штуковина располагается, в числителе или в знаменателе – важно, что она там присутствует. 2) В общий член ряда входит факториал. Что такое факториал? Ничего сложного, факториал – это просто свёрнутая запись произведения: ! При использовании признака Даламбера нам как раз придется расписывать факториал подробно. Как и в предыдущем пункте, факториал может располагаться вверху или внизу дроби. 3) Если в общем члене ряда есть «цепочка множителей», например, . Этот случай встречается редко, но! При исследовании такого ряда часто допускают ошибку – см. Пример 6. Вместе со степенями или (и) факториалами в начинке ряда часто встречаются многочлены, это не меняет дела – нужно использовать признак Даламбера. Кроме того, в общем члене ряда может встретиться одновременно и степень и факториал; может встретиться два факториала, две степени, важно чтобы там находилось хоть что-то из рассмотренных пунктов – и это как раз предпосылка для использования признака Даламбера. Признак Даламбера: Рассмотрим положительный числовой ряд . Если существует предел отношения последующего члена к предыдущему: , то: У кого до сих пор проблемы с пределами или недопонимание пределов, обратитесь к уроку Пределы. Примеры решений. Без понимания предела и умения раскрывать неопределенность дальше, к сожалению, не продвинуться. А сейчас долгожданные примеры. Пример 1 Исследовать ряд на сходимость Используем признак Даламбера: (1) Составляем отношение следующего члена ряда к предыдущему: . Из условия мы видим, что общий член ряда . Для того, чтобы получить следующий член ряда необходимо вместо подставить : . В рассмотренном примере в общем члене ряда у нас встретился многочлен 2-ой степени. Что делать, если там многочлен 3-ей, 4-ой или более высокой степени? Дело в том, что если дан многочлен более высокой степени, то возникнут трудности с раскрытием скобок. В этом случае можно применять «турбо»-метод решения. Пример 2 Возьмём похожий ряд и исследуем его на сходимость Сначала полное решение, потом комментарии: Используем признак Даламбера: (1) Составляем отношение . На самом деле, такую «халтуру» можно было провернуть и в Примере №1, но для многочлена 2-ой степени такое решение смотрится всё-таки как-то несолидно. Лично я поступаю так: если есть многочлен (или многочлены) первой или второй степени, я использую «длинный» способ решения Примера 1. Если попадается многочлен 3-ей и более высоких степеней, я использую «турбо»-метод по образцу Примера 2. Пример 3 Исследовать ряд на сходимость Полное решение и образец оформления в конце урока Рассмотрим типовые примеры с факториалами: Пример 4 Исследовать ряд на сходимость В общий член ряда входит и степень, и факториал. Ясно, как день, что здесь надо использовать признак Даламбера. Решаем. (1) Составляем отношение . Повторяем еще раз. По условию общий член ряда: . Для того чтобы получить следующий член ряда, вместо нужно подставить , таким образом: . Пример 5 Исследовать ряд на сходимость Полное решение и образец оформления в конце урока Пример 6 Исследовать ряд на сходимость Иногда встречаются ряды, которые в своей начинке содержат «цепь» множителей, этот тип ряда мы еще не рассматривали. Как исследовать ряд с «цепочкой» множителей? Использовать признак Даламбера. Но сначала для понимания происходящего распишем ряд подробно: Из разложения мы видим, что у каждого следующего члена ряда добавляется дополнительный множитель в знаменателе, поэтому, если общий член ряда , то следующий член ряда: Примерный образец решения может выглядеть так: Используем признак Даламбера: Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |