АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод разложения (непосредственного интегрирования). Этот метод заключается в разложении подынтегральной функции с использованием свойств неопределенного интеграла в линейную комбинациюосновных табличных

Читайте также:
  1. A) Зам.директора по УР, методист, тренера по вилам спорта
  2. A) Метод опроса
  3. A) Устойчивая система средств, методов и приемов общения тренера с спортсменами
  4. B) подготовка, системно построенная с помощью методов-упражнений, представляющая по сути педагогический организованный процесс управления развитием спортсмена
  5. I. Карта методической обеспеченности учебной дисциплины
  6. I. Метод стандартизации
  7. I. Методы выбора инновационной политики
  8. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  9. I. Основные характеристики и проблемы философской методологии.
  10. I. ПРОБЛЕМА И МЕТОДИКА ИССЛЕДОВАНИЯ
  11. I.1.3. Организационно-методический раздел
  12. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ

Этот метод заключается в разложении подынтегральной функции с использованием свойств неопределенного интеграла в линейную комбинациюосновных табличных интегралов.

Пример 4.

Метод замены переменной

 

Пример5. Пусть требуется найти интеграл , где a

Введем переменную t=ax+b; Тогда dt=adx, откуда dx= , Таким образом

 

 

 

Возвращаясь к переменной x, окончательно имеем

 

 

.

 

Пример 6. Найти . Положим t=x ; Тогда dt=2xdx, откуда xdx= ; таким образом

 

 

Метод интегрирования по частям

Пусть u(x) и υ(x)- непрерывно дифференцируемые функции на некотором промежутке. Тогда дифференциал их произведения равен

 

d(u υ)=udυ+υdu, (16)

 

Проинтегрируем (16) по x. Имеем

 

uυ = υ+υdu

откуда

 

υ=uυ- υdu, (17)

 

Равенство (17) называется формулой интегрирования по частям. Она позволяет нахождение одного интеграла свести к нахождению более простого интеграла.

Пример 7. Найти . Положим u=arctgx. Тогда du= , υ= и по формуле интегрирования по частям получим:

 

Пример 8. Найти ; Положим u=lnx, dυ=xdx.

Тогда du= υ= и по формуле интегрирования по частям будем иметь

.

 

 

Рассмотрим задачи, приводящие к понятию определенного интеграла.

 

 

Задача о нахождении площади криволинейной трапеции

Пусть дана неотрицательная функция y=f (x), график которой изображен на рис.3.

 

Рис.3

 

Выберем на оси OX точки a и b и восставим из них перпендикуляры до пересечения с кривой. Фигура, ограниченная кривой, перпендикулярами и осью OX, называется криволинейной трапецией. Вычислим площадь этой трапеции. Для этого разобьем отрезок на n частичных отрезков точками

 

.

 

Внутри каждого отрезка длины выберем произвольную точку k . Составим произведения ,…

Каждое такое произведение равно площади прямоугольника с основанием и высотой, равной значению функции в произвольной точке соответствующего отрезка. Сумма таких произведений

 

(18)

 

называется интегральной суммой для функции f(x) на отрезке и равна площади всех прямоугольников.

Если каждый из отрезков достаточно мал, т.е. и т.д., то площадь заштрихованной области (рис.3) стремится к площади криволинейной трапеции, равной

, (19)

 

Таким образом, задача о вычислении площади криволинейной трапеции сводится к определению предела интегральной суммы (18).

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)