|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Випромінювання: приймання та аналіз1. Величини потоків випромінювання. Інформацію про явища і процеси, що відбуваються у навколишньому Всесвіті, астрономи отримують шляхом реєстрації електромагнітного випромінювання, яке приходить від космічних об'єктів. Досі ми розглядали його як електромагнітні хвилі певної довжини (або частоти), але можна уявити його і як частинки, які називаються фотонами.
Але за межами земної атмосфери такий же телескоп здатний вловлювати сигнали від об'єктів, у 40 разів слабкіших (до 28m). З 40-х років XX ст. успішно використовують фотоелектронні помножувачі, в яких потік фотонів, що надходить від небесного світила, перетворюється в електричний струм. Фотоелектронний помножувач (ФЕП) - це скляний прозорий балон, у якому створено вакуум і в який вмонтовані фотокатод, емітери або диноди - загальною кількістю до двох десятків - і анод. Усі вони мають виводи, на які подаються все зростаючі електричні потенціали. Електрон, вирваний внаслідок фотоефекту з фотокатода, прискорюється в електричному полі, вдаряється об поверхню першого емітера і вибиває з нього декілька електронів, які, у свою чергу, рухаються в напрямку другого емітера, вдаряються об нього і вибивають ще більше електронів і т.д. У підсумку кількість електронів, що потрапляють на анод, буде у 10б-109 разів більшою від початкової кількості, вирваної з катода. З початку 70-х років в астрономії застосовують приймачі, дія яких грунтується на притаманному всім напівпровідникам явищі внутрішнього фотоефекту. Для зниження шумів прилад охолоджують до температури рідкого азоту (77 К). Одним із варіантів таких фотоприймачів є прилади із зарядовим зв'язком (ПЗЗ, англомовна абревіатура CCD). Тут електрони, що вивільнилися при поглинанні речовиною фотонів, зберігаються в окремих елементах кремнієвої кристалічної пластинки - в пікселах, а зчитувальний пристрій підраховує і реєструє величину нагромадженого реального заряду. Завдяки застосуванню ПЗЗ гранична зоряна величина, яку, зокрема, можна зареєструвати на 5-метровому рефлекторі, зросла з 25m до 28m, тобто стало можливим реєструвати потоки в 16 разів слабкіші, ніж раніше. Щоб досягти такого прогресу зі старими (фотографічними) приймачами, довелося б побудувати оптичний телескоп з діаметром дзеркала 31м. 3. Допоміжні прилади. Саме по собі зображення об'єкта, отримане у фокусі телескопа, особливо якщо це далека зоря, не несе важливої інформації, яка б розкривала його природу. Для того щоб отримати цю інформацію, астрономи використовують найрізноманітніші допоміжні прилади. Найвідомішими серед них є спектрографи. Вивчаючи спектри космічних тіл, можна дізнатися про хімічний склад, температуру, наявність і величини електричних та магнітних полів цих об'єктів, швидкість їхнього руху в просторі тощо. Дуже часто спостереження проводять із застосуванням світлофільтрів, за допомогою яких виділяють випромінювання об'єктів в окремих діапазонах спектра. Сконструйовано електронно-оптичні перетворювачі (ЕОП), завдяки яким інфрачервоне зображення трансформується у видиме. Найпростіший ЕОП нагадує однокаскадний фотопомножувач, у якому анод виготовлено у вигляді циліндричної трубки, що виконує функції фокусуючої системи. Фотоелектрони вільно проходять крізь неї і, потрапляючи на екран, покритий люмінофором (сульфідом цинку чи кадмію), різко гальмуються. При цьому екран починає світитися (флуоресціювати). В такий спосіб електронне зображення перетворюється у світлове, яке потім фотографують. З 1950-х років в астрономії використовують телевізійний метод спостережень слабких об'єктів, що дає великий виграш у часі. Цей метод дозволяє значно посилювати слабкі за яскравістю об'єкти, передавати їхні зображення від телескопа в лабораторне приміщення, збільшувати масштаб зображення, його контрастність і яскравість, розглядати це зображення або фотографувати його. Завдяки телевізійному методу з'явилася спекл-інтерферометрія - метод отримування моментального зображення об'єкта (за декілька сотих часток секунди), діаметр якого близький до дифракційного. Тим самим усувається ефект розсіювання світлових променів на неоднорідностях земної атмосфери, а тому можна не лише виявляти подвійність окремих астрономічних об'єктів, а й оцінювати головні параметри таких систем. Найрізноманітніші допоміжні пристрої та методи реєстрації енергії розроблено для позаоптичних діапазонів спектра. Опишемо коротко принцип роботи нейтринного телескопа, тобто детектора нейтрино, які приходять до Землі від Сонця та інших зір.
У 1967 р. в США на глибині 1 490 м було змонтовано установку (горизонтальний циліндричний бак довжиною близько 14 м і діаметром 6 м), що містить 400 ООО л (615 т) С2С14. Після кожних 100 днів роботи через нього пропускають 20 000 л газоподібного гелію, який захоплює з собою ізотопи 37Аr. Далі у вугільних фільтрах атоми аргону поглинаються, їхній розпад і реєструється лічильниками. Інші нейтринні детектори змонтовано, зокрема, у шахтах з видобування золота на глибині 3 км у Південно-Африканській Республіці та на глибині 2 км у Південній Індії. Нейтринну обсерваторію збудовано у надрах гори Андирчі неподалік від Ельбруса в Кабардино Балкарії. Слід також відзначити найбільші японські нейтринні детектори, встановлені за 200 км від Токіо: «Каміоканде» та «Суперкаміоканде» з чутливістю, у 100 разів вищою від попереднього. Останній можна по праву назвати нейтринним телескопом, адже з його допомогою одержано перше нейтринне зображення Сонця. I. Яку роль відіграють телескопи в астрономії? II. 1. За даними курсу фізики накресліть схему призмового спектрографа, з'ясовуючи роль кожного з його складових елементів.
Вивчивши розділ II «Інструменти і методи астрофізичних досліджень» необхідно знати: Астрономія сьогодні - це всехвильова наука, яка досліджує небесні світила не лише за допомогою видимого людським оком світла. Основне призначення телескопа - зібрати більше світла і збільшити кут зору, під яким спостерігається те чи інше світило. Оптичні телескопи бувають лінзові (рефрактори) і дзеркальні (рефлектори). В сучасній астрономії використовують, окрім оптичних, також інші телескопи: радіотелескопи, інфрачервоні тощо, як наземні, так і орбітальні. Астрономічна обсерваторія - це науковий центр, де за допомогою телескопів спостерігають небесні об'єкти. бажано вміти: Проводити спостереження небесних світил за допомогою телескопа.
III. НАША ПЛАНЕТНА СИСТЕМА
III. НАША ПЛАНЕТНА СИСТЕМА НАША ПЛАНЕТНА СИСТЕМА Всі тіла, що рухаються навколо Сонця, утворюють в сукупності планетну систему, яка називається Сонячною. Сонячна система - це розмаїта і густонаселена сім'я. До її складу входять: дев'ять великих планет; понад вісімдесят їхніх супутників; напевне, кілька десятків тисяч малих тіл або астероїдів розмірами від 10 до 1 000 км; комети; безліч метеорних тіл з розмірами меншими за 1 км - так званих метеороїдів; міжпланетні пил та газ. За своїми характеристиками великі планети поділяються на дві групи: планети земної групи - Меркурій, Венера, Земля та Марс, планети-гіганти - Юпітер, Сатурн, Уран і Нептун. Щодо планети Плутон, то вона не належить до жодної з цих груп, а швидше нагадує деякі з супутників планет-гігантів. Відмінності між планетами обох груп обумовлені їхніми масами, хімічним складом та віддаленістю від Сонця. Якщо планети земної групи мають порівняно невеликі розміри, велику густину і складаються в основному зі щільних речовин, то планети-гіганти, навпаки, мають великі розміри, малу густину і складаються в основному з газів. Маса планет-гігантів складає 98 % сумарної маси всіх планет Сонячної системи. Великою силою тяжіння вони утримують потужні метаново-аміачні атмосфери, системи кілець та супутників і швидко обертаються. І нарешті, в окрему групу виділяють сьогодні супутники планет. У вивченні Сонячної системи за останні 40 років досягнуто значних успіхів. Але й сформульовано нові питання, відповідей на які все ще немає.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |