|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Градиентные методы
Градиентные методы поиска оптимума целевой функции основаны на использовании двух основных свойств градиента функции. 1. Градиент функции ∇R (x) – это вектор, который в каждой точке области определения функции R (x) направлен по нормали к поверхности уровня, проведенной через эту точку. Проекции градиента ∇R (x) на оси координат равны частным производным функции R (x) по соответствующим переменным:
2. Направление градиента характеризует направление наибольшего возрастания функции. К градиентным методам относятся: метод релаксации, градиента, наискорейшего спуска и ряд других. Безградиентные методы.
Безградиентные методы используют в процессе поиска информацию, получаемую не при анализе производных, а от сравнительной оценки критерия оптимальности в результате выполнения очередного шага. Некоторые из этих методов целесообразно применять в сочетании с градиентными методами, что позволяет иногда построить довольно эффективные алгоритмы для решения задач нелинейного программирования. Кроме того, безградиентные методы наиболее пригодны для оптимизации действующих промышленных и лабораторных установок в условиях отсутствия математического описанияобъекта оптимизации. К безградиентным методам детерминированного поиска относятся: метод локализации экстремума функции, метод «золотого сечения», метод поиска с использованием чисел Фибо-наччи, метод Гаусса-Зейделя, метод сканирования. Рассмотрим один из этих методов – метод сканирования. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |