АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Математическое ожидание (МО)

Читайте также:
  1. Восприятие и ожидание
  2. Информационные системы и средства коммуникации, автоматизация различных видов работ и управления ими, математическое моделирование и вычислительный эксперимент относятся к
  3. Математическое описание сигналов
  4. НАПРАВЛЕНИЕ: 050200 физико-математическое образование
  5. Ожидание достижения цели агрессии и возмездия за агрессивное поведение
  6. Ожидание статического сигнала

 

М(х), МО(х), mx, m

 

Основные свойства МО:

1. М(х) СВ Х Þ Хmin£М(х)£Хmax

2. М(С)=С МО постоянной величины есть величина постоянная

3. М(Х±У)=М(Х) ±М(У)

4. М(Х×У)=М(х) ×М(у) Þ М(Сх)=СМ(х) – МО произведения двух независимых СВ

5. М(аХ+вУ)=аМ(Х)+вМ(У)

6. М(Х-m)=0 – МО СВ Х от её МО.

 

МО основных СВ

Дискретные Случайные Величины

1. Биноминальные СВ МО(Х)=np

2. Пуассоновские СВ МО(Х)=l

3. Бернуллиевы СВ МО(Х)=р

4. Равномерно распред. СВ

 

Непрерывные Случайные Величины

1. Равномерно распределенная СВ

2. Нормально распределенная СВ MO(X)=m

3. Экспоненциально распределенная СВ


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)