|
|||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Предельные теоремы в схеме Бернулли1. Предельная теорема Пуассона. При р»0, n-велико, np= l £ 10.
Формула дает распределение Пуасона, описывает редкие события.
2. Предельная теорема Муавра-Лапласа. 0 £ p £ 1, n –велико, np>10 - стандартное нормальное распределение 3. Предельная интегральная теорема Муавра-Лапласа. В условиях предыдущей теоремы вероятность того, что событие А в серии из n испытаний наступит не менее k1 раз и не более k2 раз: - функция Лапласа Следствие: Случайная – величина, которая в ходе опыта принимает то или иное значение из возможных своих значений, меняющееся от опыта к опыту и зависящее от множества непредсказуемых факторов. Если случайные события характеризуют процесс качественно, то случайная величина – количественно. Случайная величина – численная функция, задаваемая на множестве элементарных событий. На одном множестве может быть несколько случайных величин. Дискретная случайная величина (ДСК) – величина, принимающая счетное (конечное или бесконечное) множество значений. Непрерывная случайная величина (НСВ) – случайная величина, значения которой образуют несчетные множества. (Например, расход бензина на 100 км у автомобиля Жигули в Нижнем Новгороде). Задать св – значит указать все множество ее значений и соответствующие этим значениям вероятности. Говорят, что задан закон распределения случайной величины. Случайная величина может быть задана несколькими способами: 1. Табличный.
Значения случайных величин в таблице ранжируются, т.е. указываются в порядке возрастания. Недостаток табличного способа в том, что он пригоден только для случайных величин, принимающих небольшое количество значений.
2. Функция распределения F(x) = P(X<x) или интегральный закон распределения. Указывается вероятность того, что случайная величина принимает значение < x.
При увеличении значения случайной величины, количество ступенек функции F(х) возрастает, уменьшается их высота и в пределе при получаем гладкую непрерывную функцию F(х). Свойства функции F(х). 1. Неотрицательна. 0£ F(х)£1 2. Неубывающая F(х2)> F(х1) при х2>х1 3. 4. Р(a<x<b) = F(a) – F(b) Вероятность того, что значение х попадет в интервал (а,b) определяется разностью значений функции на концах интервала.
Наряду с F(х) вводится f(x) - функция плотности вероятности или дифференциальный закон распределения: Свойства функции f(x): 1. Неотрицательна. (т.к. F(x) неубывающая, f(x)³0) 2. Площадь фигуры под кривой на интервале (a,b) равна:
- условие нормировки функции f(x).
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |