АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод удельных линейных потерь давления

Читайте также:
  1. A) Метод опроса
  2. I. Метод стандартизации
  3. I. Методы выбора инновационной политики
  4. I. ОРГАНИЗАЦИОННО-МЕТОДИЧЕСКИЙ РАЗДЕЛ
  5. I. Основные характеристики и проблемы философской методологии.
  6. I.ЗАГАЛЬНІ МЕТОДИЧНІ ВКАЗІВКИ
  7. II. ВИРУСОЛОГИЧЕСКИЙ МЕТОД
  8. II. Вывод и анализ кинетических уравнений 0-, 1-, 2-ого порядков. Методы определения порядка реакции
  9. II. Методологічні засади, підходи, принципи, критерії формування позитивної мотивації на здоровий спосіб життя у дітей та молоді
  10. II. Методы прогнозирования и поиска идей
  11. II. Формальная логика как первая система методов философии.
  12. II. Цитогенетический метод

Последовательность гидравлического расчета методом удельных линейных потерь давления:

а) вычерчивается аксонометрическая схема системы отопления (М 1:100). На аксонометрической схеме выбирается главное циркуляционное кольцо. Для проведения гидравлического расчета выбираем наиболее нагруженное кольцо, которое является расчетным (главным), и второстепенное кольцо (приложение Ж). При тупиковом движении теплоносителя главное циркуляционное кольцо проходит через наиболее нагруженный и удаленный от теплового центра (узла) стояк, при попутном движении – через наиболее нагруженный средний стояк.

б) главное циркуляционное кольцо разбивается на расчетные участки, обозначаемые порядковым номером (начиная от реперного стояка); указывается расход теплоносителя на участке G, кг/ч, длина участка l, м;

в) для предварительного выбора диаметра труб определяются средние удельные потери давления на трение:

, Па/м (4.3)

где j – коэффициент, учитывающий долю потерь давления на магистралях и стояках, j=0,3 –для магистралей, j=0,7 – для стояков;

Δpр – располагаемое давление в системе отопления, Па,

Δpр=25 кПа - для теплоносителя tг=105 0С.

г) по величине Rср и расходу теплоносителя на участке G (приложение Е) находятся предварительные диаметры труб d, мм, фактические удельные потери давления R, Па/м, фактическая скорость теплоносителя υ, м/с. Полученные данные заносятся в таблицу 5.2.

д) определяются потери давления на участках:

, Па (4.4)

где R – удельные потери давления на трение, Па/м;

l – длина участка, м;

Z – потери давления на местных сопротивлениях, Па,

; (4.5)

ξ – коэффициент, учитывающий местное сопротивление на участке, (приложения Б, В);

ρ – плотность теплоносителя, кг/м3, (приложение Д);

υ - скорость теплоносителя на участке, м/с, (приложение Е);

е) после предварительного выбора диаметров труб выполняется гидравлическая увязка, которая не должна превышать 15%.

ж) если увязка проходит, то начинают выполнять расчет второстепенных циркуляционных колец (аналогично), если же нет, то на нужных участках устанавливаются шайбы. Диаметр шайбы подбирают по формуле:

, мм, (4.6)

где Gст – расход теплоносителя в стояке, кг/ч, (таблица 3.3);

ш – требуемые потери давления в шайбе, Па.

Диафрагмы устанавливаются у крана на основании стояка в месте присоединения к подающей магистрали.

Диафрагмы диаметром менее 5 мм не устанавливаются.

 

По результатам расчетов заполняются таблицы 4.2, 4.3.

1. Графа 1 – проставляем номера участков;

2. Графа 2 – в соответствии с аксонометрической схемой по участкам записываем тепловые нагрузки, Q, Вт;

3. Рассчитываем расход воды в реперном стояке для расчетного участка (формула 4.1), графа 3:

4. В соответствии с таблицей 3.14 по диаметру стояка Dу, мм выбираем диаметры подводок и замыкающего участка: Dу(п), мм; Dу(з), мм.

5. Рассчитываем коэффициенты местных сопротивлений на участке 1 (приложения Б, В), сумму записываем в графу 10 таблиц 4.2, 4.3.

На границе двух участков местное сопротивление относим к участку с меньшим расходом воды.

Результаты расчетов сводим в таблицу 4.1.

 

Таблица 4.1 – Местные сопротивления на расчетных участках

№ участка, вид местного сопротивления åx
  Например: Участок 3       2 тройника на проход, x=1; åxуч(3) = 2х1=2
Продолжение таблицы 4.1  
Например: Стояк 3   1) чугунный радиатор – 3 шт., x=1,4; 2) кран регулирующий двойной регулировки – 6 шт., x=13; 3) отвод гнутый под углом 900 – 6 шт., x=0,6; 4) вентиль обыкновенный прямоточный – 2 шт., x=3; 5) тройник поворотный на ответвление – 2 шт., x=1,5.   åxст3 = 3х1,4+ + 6х13 + 6х0,6 + 2х3 + 2х1,5 = = 96,2

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)