|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Краткая теория. Раздел физики, в котором рассматривают законы равновесия и движения жидких и газообразных тел, а также их взаимодействия с твердыми телами
Раздел физики, в котором рассматривают законы равновесия и движения жидких и газообразных тел, а также их взаимодействия с твердыми телами, называют гидроаэромеханикой. Характерное свойство жидких и газообразных тел – их текучесть, т.е. малая сопротивляемость деформации сдвига: если скорость сдвига стремится к нулю, то силы сопротивления жидкости или газа этой деформации также стремятся к нулю. Иными словами, жидкие и газообразные тела не обладают упругостью формы – они легко принимают форму того сосуда, в котором находятся. Вследствие этого внешнее давление, производимое на жидкость или газ, передается ими во все стороны равномерно (закон Паскаля). Движение жидкостей или газов называют течением, а совокупность частиц движущейся жидкости или газа называют потоком. В гидромеханике отвлекаются от молекулярного строения жидкостей и газов, рассматривая их как сплошную среду. Течение жидкости называют установившимся или стационарным, если скорость жидкости в каждой точке пространства, занятого жидкостью, не изменяется с течением времени, т.е. V не зависит от t. В случае неустановившегося течения V зависит также от времени t. Течение называют ламинарным или слоистым в том случае, если поток представляет собой совокупность слоев, перемещающихся друг относительно друга без перемешивания. Течение называют турбулентным, если имеет место перемешивание различных слоев жидкости или газа вследствие образующихся завихрений. В целях наглядности движение жидкости можно изображать с помощью линий тока, которые проводят так, что касательные к ним совпадают по направлению с векторами скоростей жидкости в соответствующих точках пространства. В случае стационарного течения линии тока не изменяются с течением времени и совпадают с траекториями отдельных частиц жидкости. Поверхность, которая образована линиями тока, проведенными через все точки малого замкнутого контура, называют трубкой тока. Часть жидкости, ограниченную трубкой тока, называют струей. В реальных жидкостях течение усложняется тем, что между отдельными слоями потока происходит внутреннее трение. Однако в ряде случаев влияние внутреннего трения невелико и им можно пренебречь. Жидкость, в которой отсутствует внутреннее трение, называют идеальной жидкостью. Поэтому изучая движение идеальной жидкости, можно установить ряд закономерностей, которые с известным приближением применимы к течению реальных жидкостей. При переходе потока жидкости из трубки с большим диаметром Д в трубку с меньшим диаметром Д происходит увеличение скорости течения от значения V до значения V . Соотношение между скоростями течения V и V задается уравнением неразрывности струи: SV = Const или для двух сечений: S V =S V (1) Если S= ,то уравнение (1) перепишется: V Д = V Д (2) Изменение скорости течения влечет изменение давления, которое можно определить из уравнения Бернулли:
Для горизонтальной трубки уравнение Бернулли запишется: , отсюда P - P = , (3) Где P , V и P , V -давления и скорости в сечениях Д и Д соответственно; - плотность жидкости. Решая совместно уравнения (2) и (3), найдем скорость течения V : V = (4) Воспользовавшись уравнением неразрывности струи, найдем секундный объемный расход жидкости:
(5) Экспериментально секундный объемный расход жидкости можно определить, измеряя время t наполнения жидкостью баллона объемом V: W = (6) Сравнение результатов измерений секундного объемного расходов жидкости, полученным по формулам (5) и (6), может служить проверкой справедливости уравнения Бернулли.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |