|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные критерии при выборе принтераСуществуют четыре основных критерия, на которые следует ориентироваться при выборе принтера: качество печати, возможность печати цветных изображений, цена самого принтера и расходных материалов, а также скорость печати. 1) Качество печати. Наиболее важно при распечатывании деловых документов и официальных бумаг. Для получения качественных распечаток наилучшим образом подходят лазерные принтеры. Они считаются лидерами по этому критерию. Тонер лазерных принтеров не расплывается по бумаге (даже не очень качественной), как чернила струйных принтеров. Высокое разрешение позволяет хорошо «прорисовывать» тонкие линии и контуры букв. Они получаются четкими. Это придает документу аккуратный и привлекательный вид. Струйные принтеры, особенно последних моделей, также позволяют получать распечатки с высоким разрешением. Однако на струйном принтере скорость печати намного ниже, чем у лазерных, особенно при создании качественной печати. Кроме того, действительно качественная печать возможна только на плотной бумаге с хорошо обработанной поверхностью, не допускающей расплывания чернил. При использовании рыхлой бумаги буквы и другие изображения растекутся между волокнами чернил. Матричные принтеры в большинстве случаев не дают качественных распечаток. Здесь нет опасности растекания чернил, однако иголки принтера и довольно грубая красящая лента не позволяют получить высокого разрешения (отпечаток, сделанный на матричном принтере, выдают характерные точки от ударов иголок). Для матричных принтеров характерно также «выцветание» отпечатков: по мере износа красящей ленты они получаются все более блеклыми. Можно, конечно, приобрести матричный принтер с большим числом иголок в печатающей головке. Это позволит поднять качество печати при низкой стоимости расходных материалов. Для получения особо качественных отпечатков, больше похожих на фотографии, чем на листы, вышедшие из принтера, можно использовать сублимационный принтер. Технология печати, применяемая в этих принтерах, обеспечивает плавное перетекание цветов и полутонов, а также отсутствие расплывания красителя. Но стоят такие принтеры дорого, и печать идет медленно. 2) Возможность печати цветных изображений. Цветная печать все чаще используется при подготовке деловых отчетов, графиков и т. д. Несколько отдельно в этом списке стоит печать фотографий (фотопечать). Лидерами в удобстве и простоте организации печати цветных изображений являются струйные принтеры. Большинство современных струйных принтеров имеют такую возможность и комплектуются при поставке именно цветными картриджами (иногда и черным, и цветным картриджами). Среди присутствующих сейчас на рынке цветных принтеров струйные являются самыми недорогими. Некоторые модели струйных принтеров специально приспособлены для частой печати цветных изображений. Среди современных лазерных принтеров встречаются и цветные, но покупать их стоит, только если объем печати цветных изображений достигает десятков или сотен листов. Объясняется это очень просто: цена на них намного выше, чем на прочие модели принтеров. Матричные принтеры, способные печатать в цвете, встречаются редко, и в них нет большой необходимости. Для высокоскоростной и высококачественной цветной печати хорошо подходят твердокрасочные принтеры, но низкой ценой они не отличаются, хотя расходные материалы стоят относительно недорого. Если требуется цветная печать, то, безусловно, стоит приобрести струйный принтер. Если же объем печати велик, но цветные изображения приходится печатать нечасто, вас может устроить покупка черно-белого лазерного принтера, и для печати в цвете – цветного струйного. 3) Скорость печати. Особенно важна при печати больших по объему документов. Если скорость – главное, то необходимо приобрести лазерный принтер. Хорошую конкуренцию лазерным принтерам могут составить принтеры твердокрасочные. Они печатают со сходными скоростями, но при этом в цвете. Струйные принтеры печатают медленнее лазерных, хотя есть модели, которые способны выдавать около 20 страниц в минуту (в режиме черновой печати). Матричные принтеры давно отстали от остальных принтеров (кроме разве что сублимационных) по скорости печати. Единственное, что может как-то поддержать их имидж, – способность печатать несколько копий документа одновременно. 4) Стоимость принтеров и расходных материалов. Что касается только цены самого принтера, то наиболее дорогими в настоящее время являются лазерные, твердокрасочные и сублимационные принтеры. Хотя лазерные и твердокрасочные принтеры имеют высокую стоимость, стоимость печати одного листа на них небольшая. Сменный картридж к лазерному принтеру стоит недешево, но его емкость такова, что один лист оказывается недорогой. Струйные принтеры занимают промежуточное положение среди остальных типов по цене самих устройств и по стоимости расходных материалов. Сублимационные принтеры отличаются высокой стоимостью расходных материалов, да и сами принтеры трудно назвать дешевыми. Самыми недорогими как по цене самого принтера, так ипоцене расходных материалов оказываются матричные принтеры. По цене они сравнимы со струйными принтерами недорогих моделей, а по цене печати одного листа – более предпочтительны, чем лазерные.
♦ Плоттеры. Устройство, позволяющее представлять выводимые из компьютера данные в форме рисунка или графика на бумаге, называют обычно графопостроителем, или плоттером (Plotter). Из этого определения, в частности, следует, что в качестве плоттера с успехом может использоваться соответствующий принтер. Первыми появились и традиционно широко используются перьевые плоттеры. Основной конкурент для них – струйные плоттеры, использующие более современную технологию печати. Существующие на сегодня перьевые плоттеры условно можно разделить на три группы: · плоттеры, использующие фрикционный прижим для перемещения бумаги в направлении одной оси и движения пера по другой; · барабанные (или рулонные плоттеры), работающие примерно так же, как и фрикционные, но использующие для перемещения непрерывной перфорированной ленты бумаги специальный трактор (Tractor Feed); · планшетные плоттеры, в которых бумага неподвижна, а перо перемещается по обеим осям. Наиболее часто с персональными компьютерами используются первый и третий типы графопостроителей, которые рассчитаны на форматы бумаги A3 или A4. Тем не менее, существуют планшетные графопостроители даже для формата A0. Барабанные плоттеры обычно применяются для вывода длинных непрерывных графиков, диаграмм и больших чертежей, что характерно обычно для задач, связанных, например, с САПР. Различные модели плоттеров могут иметь как одно, так и несколько перьев различного цвета (обычно 4-8). Перья бывают трех различных типов: фитильные (заправляемые чернилами), шариковые (аналог шариковой ручки) и с трубчатым пишущим узлом (инкографы). Для заправки последнего типа перьев применяется специальная тушь. В плоттерах могут использоваться как специальные технологии (например, в электростатических), так и технологии, хорошо знакомые по принтерам (термо-, лазерная, LED, струйная). В настоящее время струйные устройства получают все большее распространение. Например, плоттеры Hewlett-Packard семейства DesignJet формата А0 и А1 работают в 4-5 раз быстрее, нежели перьевые. ♦ Монитор. Монитор (дисплей) компьютерный – это устройство визуального отображения текстовой и графической информации. Классификация мониторов. Мониторы бывают цветные и монохромные, отличаются размерами, оснащаются средствами регулировки и цветокорректировки. Мониторы могут поддерживать разные типы разрешения (количество точек в выводимом изображении по горизонтали и вертикали).
1) Мониторы на базе электронно-лучевой трубки. Принцип работы. Внутри привычного всем компьютерного монитора находится кинескоп (рис. 36) или электронно-лучевая трубка (ЭЛТ). Ее узкая часть – электронная пушка, которая, в полном соответствии с названием, постоянно выстреливает электроны непрерывным пучком. А специальная система фокусировки делает пучок очень тонким, можно сказать, что получается электронная «игла». Поскольку электрон – частица заряженная, пучок можно отклонять электромагнитным полем так, чтобы он пробегал по экрану (экран монитора – это передняя часть трубки) по всем строкам подряд. Например, зададите вы разрешение 1024х768, лучу придется пробежаться по 768 строкам и на каждой строке поставить по 1024 отметки. Отметки ставятся на люминофоре – веществе, которое светится под воздействием пучка. Чтобы создать цветное изображение, а оно состоит из трех основных цветов: R-красного, G-зеленого и B-синего (RGB), в кинескопе работают сразу три электронные пушки, каждая для своего цвета. Соответственно, и люминофор на внутреннюю поверхность экрана наносится трех типов – каждый светится своим цветом. Если пучок бьет сильнее – свет получается более яркий. Так и можно дозировать, допустим, 5 частей красного, 25 – зеленого, 243 – синего, причем, очень точно и в каждой точке экрана. Перед люминофором стоит сетка, которая необходима, чтобы луч от синей электронной пушки попал точно на синий люминофор, от красной – точно на красный. Наибольшее распространение получила сетка «теневая маска» – буквально это «решето», лист из специального сплава, который практически не меняет линейных размеров при нагревании. Мельчайшие дырочки на нем ориентированы так, что пропускают луч только к «своему» люминофору. Меньшее распространение получила сетка «апертурная решетка» – те же функции в ней выполняет множество вертикальных нитей. Рис. 36. Электронно-лучевая трубка: 1 – электронная пушка; 2 – корпус кинескопа; 3 – экран Яркость определяет средний уровень свечения экрана, а контрастность – соотношение яркости наиболее светлых и наиболее темных элементов изображения (у большинства ЭЛТ-мониторов контрастность лежит в пределах 500:1). Разрешающая способность монитора определяется числом элементов изображения (пикселов), которые воспроизводятся по горизонтали и вертикали. Существует несколько обычных типоразмеров экранов мониторов, используемых для IBM PC-совместимых персональных компьютеров: 9, 12, 14, 15, 16, 17, 19, 20 и 21 дюйм (по диагонали), при этом указывается не диагональ видимого изображения, а диагональ передней панели монитора. Область видимого изображения меньше: так для 17-дюймового монитора она может меняться от 15,5 до 16,2 дюймов у разных производителей. В последнее время производители мониторов стали указывать область видимого изображения. Кадровая частота монитора на базе ЭЛТ измеряется обычно в герцах и во многом определяет устойчивость изображения. Чем выше частота кадров, тем устойчивее изображение. Четкость изображения на мониторе тем выше, чем меньше размеры точек люминофора на внутренней поверхности экрана. Обычно говорят не о размерах самих точек, а о расстоянии между ними. Этот параметр для различных моделей мониторов может лежать в диапазоне от 0,41 до 0,22 мм. Нормальным уровнем считается 0,26-0,28 мм для ЭЛТ с теневой маской и 0,25 мм для ЭЛТ с апертурной решеткой. Достоинства и недостатки ЭЛТ. Самые главные недостатки, которых не удается преодолеть – это большие габариты и вес. С ними, конечно, тоже пытались бороться – в последние годы появились укороченные трубки. Это позволило сократить один из размеров (глубину) на 20–30 процентов, но коренным образом проблему не решило – при более коротком кинескопе электронные пучки приходится отклонять на больший угол, и появляются новые проблемы с фокусировкой и сведением лучей на границах экрана. Т. е. размеры уменьшить не удается. Поскольку ЭЛТ-технология считается уходящей, производители перестали вкладывать в ее развитие большие инвестиции, и, следовательно, коренных изменений ждать уже не приходится. Что касается качества изображения, то возможны следующие проблемы. На экране монитора возможны искажения, напоминающие легкую рябь, так называемый муар, который особенно заметен на картинках со штриховкой, частыми чередующимися полосами. Допустим, трем пушкам не удается точно дозировать цвет в каждой точке экрана. Тогда получается плохая цветопередача, т. е. монитор получает в итоге неестественные цвета. Другой возможный дефект: при большом отклонении от центра экрана сложнее управлять пучком электронов. Поэтому часто именно на краях экрана может наблюдаться плохой фокус – контуры «нарисованных» пучком символов оказываются размытыми. Еще один возможный минус – плохое сведение лучей. В идеале, синяя пушка не выстрелит в красный люминофор. Но если система разбалансирована, пушка «заденет» не свой цвет. И тогда вместо, допустим, черной буквы, можно увидеть букву черную, но с разноцветной опушкой. Но в последние годы технология производства ЭЛТ настолько продвинулась, что мониторы с явными дефектами фокусировки и сведения уже не часто встретишь. В электронно-лучевой трубке для создания и отклонения электронного луча требуются электрические и магнитные поля большого напряжения, воздействия которых вредны для человека. Первыми о безопасности работающего за компьютером человека позаботились шведские общественные и научные организации. Их стараниями появился стандарт MRP II, регламентирующий уровни электростатических, электрических и магнитных полей для компьютерной и офисной техники. Затем под руководством Шведской Федерации Профсоюзов (TCO) были разработаны наиболее известные сегодня стандарты TCO 92, TCO 95 и TCO 99 (нумерация по году появления). Разработчики стандартов исходили из того, что сегодня человек в любом случае живет и работает в среде, где электростатические и электромагнитные поля существуют – с компьютерами или без них. И основной задачей стало ограничение уровня полей до обычного городского фона. Если взять основной смысл стандартов, то MRP II предписывает, что в зоне 50 см вокруг монитора перечисленные поля должны быть на уровне, не вредящем здоровью человека, а TCO 92 уменьшает зону опасности до 30 см, т. е. если не приближаться к монитору вплотную, то можно не думать о вредных излучениях. Что характерно, в последующих TCO 95 и TCO 99 требования по уровню излучений не были ужесточены. Все новые ограничения касались только энергопотребления, пожарной безопасности и концентрации вредных химических веществ в пластмассе корпусов, а уровень излучений по сей день определяется требованиями 1992 года. Что касается мерцания экрана, то в последние годы этот недостаток преодолен. У люминофоров есть свойство – светиться еще некоторое время после облучения пучком электронов (т. е. послесвечение). Следовательно, чтобы не было мерцания (т. е. заметного глазу колебания яркости экрана), следующий пучок должен прийти не позднее, чем яркость свечения заметно упадет. Стандартами безопасности предписывается частота обновления экрана не менее 85 герц. Большинство людей не в состоянии заметить мерцания на этой частоте. 2) Жидкокристаллический монитор (LCD – liquid crystal display). Первый рабочий жидкокристаллический дисплей был создан Фергесоном (Fergason) в 1970 году. До этого жидкокристаллические устройства потребляли слишком много энергии, срок их службы был ограничен, а контраст изображения был удручающим. На суд общественности новый ЖК дисплей был представлен в 1971 году и получил горячее одобрение.
Представим себе ту же картину, которую по точкам вычерчивает пучок электронов в ЭЛТ, и вместо электронных пушек поставим обычную лампу, которая равномерно подсвечивает картинку, как в проекторе. Затем вместо люминофора поставим в каждую точку изображения затвор – элемент, который может полностью закрывать путь света или частично его пропускать. Теперь несложно представить, как множество элементов LCD-монитора формируют картинку. А для того, чтобы картинка получилось цветной, на каждую точку приходится ставить не один затвор, а сразу три – для трех цветов RGB. Существует два вида ЖК мониторов: DSTN (dual-scan twisted nematic – кристаллические экраны с двойным сканированием) и TFT (thin film transistor – на тонкопленочных транзисторах), также их называют соответственно пассивными и активными матрицами. Разница – в адресации управляющих сигналов. В ЖК мониторе с TFT матрицей каждой точкой экрана управляет свой электронный переключатель. Такой монитор обеспечивает более качественное изображение. Достоинства и недостатки. Главное достоинство ЖК-моделей – малые габариты. ЖК монитор потребляет меньшую мощность. При работе с ЖК монитором нагрузка на глаза существенно меньше – сказывается ровная плоскость экрана и отсутствие мерцания. Яркость – однозначно выше (поставить мощную лампу проще, чем усилить электронный пучок). Коэффициент отражения света от поверхности ЖК монитора в три и более раз меньше, чем от поверхности кинескопа с самым совершенным на сегодняшний момент антибликовым покрытием (Sony FD Trinitron, Mitsubishi Diamondtron NF). Соответственно, бликов на экране ЖК монитора в несколько раз меньше. В жидкокристаллических мониторах каждый пиксель расположен в фиксированной матрице и включается или выключается отдельно, поэтому не возникает никаких проблем со сведением лучей, в отличие от ЭЛТ мониторов, где требуется безукоризненная работа электронных пушек. Как и мониторы на основе ЭЛТ, ЖК-дисплеи обычно имеют размер "зерна" 0.26-0.3 мм, хотя существуют модели и с меньшим "зерном". В силу особенностей технологии "зерно" на ЖК-дисплее выглядит гораздо четче. Утверждение о том, что ЖК мониторы абсолютно не излучают, неверно. Переменные электромагнитные поля, которые создаются блоком питания и всей электрической схемой, ЖК монитор излучает так же, как и ЭЛТ. Однако ЖК монитор имеет нулевой постоянный потенциал дисплея, то есть не создает вокруг себя гораздо более вредного постоянного электростатического потенциала. К безусловным плюсам относятся принципиальное отсутствие проблем с фокусировкой и сведением (ЖК-элементы стоят на том месте, где они должны быть), а также полное отсутствие мерцания экрана (свечение ЖК-элементов не надо поддерживать, они пропускают свет, а не создают его). Муар или подобные ему эффекты практически отсутствуют. Экран ЖК-дисплея абсолютно плоский. Изображение на экране ЖК монитора не мерцает, при работе со статической картинкой (текст, таблицы и т. п.) перерисовывается не весь экран, как в случае с ЭЛТ монитором, а лишь те пиксели, которые изменяются. Контрастность на некоторых моделях хуже, чем у ЭЛТ – мониторов. Эти модели имеют контрастность 250:1 или 300:1. Правда, последние модели уже выходят на уровень 400:1 и даже 600:1, что вплотную приближает их к ЭЛТ-мониторам. На большинстве моделей ЖК-мониторов – малый угол обзора. Наибольшая контрастность проявляется при отвесном взгляде в центр экрана. Если смотреть на изображение под некоторым углом, картинка заметно теряет контрастность, это проявляется, даже когда пользователь просто работает с большим экраном – 17 или 18 дюймов. Тогда периферию экрана волей-неволей приходится рассматривать под некоторым углом, и очень неприятно, когда края экрана выглядят не так, как центр. Обычно угол обзора измеряют до 10-процентного падения контрастности. У большинства продаваемых моделей он не уже 110–120 градусов по вертикали и горизонтали, у некоторых – доходит уже до 170. Пиксели ЖК-монитора не мерцают, но когда изображение приходится быстро менять, в некоторых моделях все еще сказывается их инерционность. При быстрой прокрутке экрана картинка тормозит, не успевая обновляться. Время реакции пикселя у слабых моделей составляет около 40 мс, а у сильных – около 25 мс. Если пересчитать на кадры в секунду, получится всего 25–40. Появились модели со временем реакции пикселя 16 и даже 12 мс. ЭЛТ мониторы могут работать на нескольких разрешениях в полноэкранном режиме, когда ЖК монитор может работать только с одним разрешением. Меньшие разрешения возможны лишь при использовании части экрана. Так, например, на мониторе с разрешением 1024х768 точек при работе в разрешении 640х480 будет задействовано лишь 66% экрана. Применение же специальных функций "растягивания" изображения на весь экран (полноэкранный режим работы) приводит к катастрофическому падению четкости и искажению изображения. Существует проблема, так называемых «битых пикселей» – считается допустимым, если в матрице несколько точек не работают, это ремонту не подлежит и основанием для обмена не является. Главный недостаток ЖК мониторов – высокая цена. Этому способствует сложность изготовления жидкокристаллической панели с огромным числом управляющих элементов. При одинаковых размерах экрана жидкокристаллический дисплей все еще в 2–2,5 раза дороже, чем ЭЛТ-монитор. 3) Плазменные мониторы PDP. Принцип действия плазменной панели (рис. 38) основан на использовании эффекта свечения инертного газа под воздействием электричества (примерно так же работают неоновые лампы). Такая панель состоит из двух стеклянных пластин, между которыми есть небольшой промежуток (0,1 мм), заполненный смесью благородных газов. На каждой из пластин расположены электроды, при подаче напряжения на которые возникает электрический пробой газа в соответствующей ячейке. Этот пробой сопровождается излучением света. В современных цветных плазменных дисплеях применяется так называемая технология Plasmavision. Для формирования изображения используется множество пикселей, состоящих из трех субпикселей красного, зеленого и синего цветов (RGB). Ультрафиолетовое излучение плазмы возбуждает слой люминофора, вызывая видимое свечение. Каждая отдельная точка красного, синего или зеленого цветов может светиться с одним из 256 уровней яркости, что в сочетании дает около 16,7 млн оттенков комбинированного цветного пикселя (триады). Достоинства и недостатки. К числу несомненных преимуществ технологии PDP относятся высокая яркость и контрастность изображения наряду с отсутствием мерцания. Частота обновления плазменных экранов в несколько раз больше, чем у конкурирующих с ними LCD-панелей. Существующие плазменные мониторы поддерживают разрешения вплоть до 1280x1024 при 16 млн отображаемых цветов. Яркость экрана таких разработок, как Mitsubishi Leonardo (рис. 34), составляет 300 кд/м2при контрастности 400:1. Для сравнения: у профессионального монитора на базе ЭЛТ яркость равняется приблизительно 350, а у телевизора – от 200 до 270 кд/м2при контрастности от 150:1 до 200:1. Таким образом, плазменные панели по качеству изображения намного превосходят даже хорошие кинескопы. Важным преимуществом плазмы по сравнению с жидкокристаллическими панелями является большой угол обзора по вертикали и горизонтали – 160°. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях – даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. Сравнительно небольшая масса и малая толщина позволяют вешать такие дисплеи прямо на стену. Некоторым неудобством является небольшой, по сравнению с ЭЛТ-мониторами, срок службы. Но и пять лет – неплохо для компьютерного дисплея. Главным и, пожалуй, единственным весомым недостатком существующих PDP-мониторов является их высокая цена. Сейчас разработкой и производством плазменных мониторов занимаются такие компании, как Fujitsu, Matsushita, Mitsubishi, NEC, Pioneer. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.) |