|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Состав полевого оборудования в АСУ ТПАвтоматизированная система управления (АСУ) технологическим процессом (ТП) – собирательный термин, имеющий отношение ко всему многообразию управляющих компьютерных устройств и их объединений, которые имеют целью обеспечить управление разнообразными процессами. Рисунок 1 Обобщенная архитектура АСУ ТП На рисунке 1 представлена схема комплекса технических средств многоуровневой системы управления, обобщающая многочисленные применения таких систем для управления технологическими процессами нефтяной и газовой промышленности. Как правило, это двух- или трехуровневые системы, и именно на этих уровнях реализуется непосредственное управление технологическими процессами. Специфика каждой конкретной системы управления определяется используемой на каждом уровне программно - аппаратной платформой. Структура АСУ ТП должна содержать следующие подсистемы: 1. Полевое оборудование, включающее в себя интеллектуальные средства измерения, контроля, регулирующие отсечные и запорные клапаны, электроприводы. 2. Кабельные линии связи, кроссовое оборудование. 3. Барьеры искробезопасности, нормирующие преобразователи. 4. Программируемые контроллеры, модули ввода - вывода аналоговых и дискретных сигналов. 5. Операторские станции – компьютеры, устройства на магнитных носителях, мониторы, печатающие устройства и так далее. 6. Кабельные, оптоволоконные и радиоканалы связи. 7. Система пожарной автоматики и контроля загазованности. 8. Система бесперебойного электропитания. Нижний уровень (полевой) – уровень объекта (контроллерный) – включает различные датчики (измерительные преобразователи) для сбора информации о ходе технологического процесса, электроприводы и исполнительные устройства для реализации регулирующих и управляющих воздействий. Датчики поставляют информацию локальным контроллерам (PLC), которые могут обеспечить реализацию следующих функций: сбор, первичная обработка и хранение информации о состоянии оборудования и параметрах технологического процесса; автоматическое логическое управление и регулирование; исполнение команд с пункта управления; самодиагностика работы программного обеспечения и состояния самого контроллера; обмен информацией с пунктами управления. Так как информация в контроллерах предварительно обрабатывается и частично используется на месте, существенно снижаются требования к пропускной способности каналов связи. В качестве локальных PLC в системах контроля и управления различными технологическими процессами в настоящее время применяются контроллеры как отечественных, так и зарубежных производителей. На рынке представлены многие десятки и даже сотни типов контроллеров, способных обрабатывать от нескольких десятков до нескольких тысяч и даже десятков тысяч переменных. Разработка, отладка и исполнение программ контроллерами осуществляется с помощью специализированного программного обеспечения, широко представленного на рынке. Это, прежде всего, многочисленные пакеты программ для программирования контроллеров, предлагаемые производителями аппаратных средств. К этому же классу инструментального ПО относятся и пакеты ISaGRAF (CJ International France), InConrol (Wonderware, USA), Paradym 31 (Intellution, USA), имеющие открытую архитектуру. Информация с локальных контроллеров может направляться в сеть диспетчерского пункта непосредственно, а также через контроллеры верхнего уровня (см. рис. 1). В зависимости от поставленной задачи контроллеры верхнего уровня (концентраторы, коммуникационные контроллеры) реализуют различные функции. Некоторые из них перечислены ниже: сбор данных с локальных контроллеров; обработка данных, включая масштабирование; поддержание единого времени в системе; синхронизация работы подсистем; организация архивов по выбранным параметрам; обмен информацией между локальными контроллерами и верхним уровнем; работа в автономном режиме при нарушениях связи с верхним уровнем; резервирование каналов передачи данных и др. Полевой уровень этой схемы (рисунок 1) составляют измерительные приборы и исполнительные механизмы. Приборы могут быть аналоговыми или цифровыми (интеллектуальными). Аналоговые представляют измеренную величину в форме определенного значения напряжения или силы тока. Цифровые приборы имеют встроенные логические схемы, они представляют измеренную величину в виде сигнала, соответствующего спецификации протокола передачи данных, определенного для этих устройств. Для обмена информацией с приборами первого вида необходимо использовать аналого-цифровые и цифро-аналоговые преобразователи. С приборами второго типа можно обмениваться информацией непосредственно по сети передачи данных. Таким образом полевой уровень АСУ ТП относятся: датчики и чувствительные элементы (ЧЭ) параметров хода производственного процесса; усилители различного функционального назначения и различной физической природы; стабилизаторы; переключательные и логические элементы; исполнительные и логические элементы; исполнительные сервоприводы различного функционального назначения и различной физической природы; устройства питания. Применяющиеся для автоматизации производства датчики производственных параметров, обладающие электрическим выходом, можно подразделить на две группы: параметрические; генераторные. Параметрические датчики изменяют в ответ на изменение измеряемого производственного параметра какой–либо свой параметр. Чаще всего этим изменяемым параметром датчика является омического сопротивление его ЧЭ. Питание такого параметрического датчики осуществляется от внешнего источника энергии, и величина подводимой энергии во всем диапазоне измерений остается неизменной. Характерным примером такого рода датчика может служить термометр сопротивления. Генераторные датчики выдают на выход измерительный сигнал за счет собственной внутренней энергии и не нуждаются в каких–либо внешних источниках. Характерным примеров такого датчика может служить датчик скорости вращения тахогенератора. К параметрическим датчикам относятся: резистивные; индуктивные; трансформаторные; емкостные. К генераторным датчикам относятся: термоэлектрические; индукционные; пьезоэлектрические; фотоэлектрические. Развиваемая тахогенератором ЭДС может быть пропорциональной скорости вращения его ротора. По принципу измерений устройства получения информации, используемые для автоматизации производственных процессов, подразделяются на измерительные системы с абсолютным отсчетом и измерительные системы с циклическими датчиками. В измерительных системах с абсолютным отсчетом для каждого разряда измерения используется свой датчик, цена деления выходного сигнала которого соответствует данному разряду. Измерительные системы с циклическими датчиками содержат один датчик точного отсчета, соответствующий младшему разряду измеряемой величины, а показания в более старших разрядах формируются путем подсчета числа циклов этого датчика. Примерами обоих типов измерительных систем могут служить датчики координатных перемещений в газовых компрессорах, станках ЧПУ. Названные выше компоненты нижнего уровня систем автоматизации производства служат для различного преобразования полученной информации и формирования на этой основе управляющих воздействий, поступающих на исполнительные устройства. Исполнительные устройства являются последним звеном в системах управления и через согласующие механизмы воздействуют на режим функционирования управляемого объекта. В зависимости от характера движения рабочего органа исполнительные устройства подразделяются на три группы: исполнительные устройства с линейным движением; исполнительные устройства с поворотным движением (т. е. с вращением в пределах одного оборота выходного вала); исполнительные устройства с вращательным движением (т. е. с вращением, превышающим один оборот выходного вала). По виду используемой энергии исполнительные устройства подразделяются на электрические, гидравлические и пневматические. К электрическим исполнительным устройствам относятся различного рода электродвигатели, электромагнитные муфты, втяжные и поворотные электромагниты, электромагнитные реле, электромагнитные контакты и др. Гидравлические исполнительные устройства включают в себя различного рода силовые цилиндры, поршневые двигатели, шестеренные двигатели, лопастные двигатели, управляемые клапаны и регуляторы и др. Пневматические исполнительные устройства также включают в себя различного рода силовые цилиндры, поршневые и лопастные двигатели, управляемые клапаны, а также диафрагменные приводы (главным образом, для задач зажима) и др.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |