АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Устройство ЭПК для ЗРК

Читайте также:
  1. I. Назначение, классификация, устройство и принцип действия машины.
  2. III.2.4. Организационное устройство палат Федерального Собрания Российской Федерации
  3. III.3.4. Организационное устройство Правительства России
  4. III.4.4. Организационное устройство федеральных органов власти
  5. III.7.3.Организационное устройство органов прокуратуры
  6. Автомат системы Молчанова. Устройство, принцип работы, техническая характеристика.
  7. АГРАРНОЕ УСТРОЙСТВО, ОСТАТКИ ОБЩИНЫ. ВОЗНИКНОВЕНИЕ СОБСТВЕННОСТИ АЛЛОДИАЛЬНОГО ТИПА
  8. Административно-территориальное устройство
  9. Административно-территориальное устройство Омской области и порядок его изменения
  10. Арифметико-логическое устройство (АЛУ).
  11. Благоустройство и инженерное оборудование сельских населенных мест
  12. Благоустройство промышленных территорий.

Читать 15 вопрос.

Конструкция ПК.

Конструкция ОК.

Конструкция ПК и ОК

 

Задуманы оптические кабели очень давно, но не было подходящих материалов. Наконец, в начале 70-х годов, после многолетних и трудоемких поисков, было создано волокно с потерями света при передаче менее 20 дБ/км.

Оптические кабели (ОК) в отличие от широко применяемых простых кабелей с медными проводниками не требуют дефицитных металлов, изготавливаются из стекла и полимеров. Достоинство ОК перед ПК являются: экономия меди, возможность передачи большого потока информации, малое ослабление сигнала и независимость его частоты в широком диапазоне частот, высокая защищенность от внешних электромагнитных помех, малые габаритные размеры и масса (масса 1 м ОК примерно в 10 раз меньше, чем масса ПК), высокая надежность (отсутствие искрения и короткого замыкания).

Сначала были проложены соединительные линии между АТС в городах, а затем началось строительство междугородных и международных оптических кабельных магистралей. В последнее десятилетие массово строят морские и океанские межматериковые линии, причем Россия принимает в этом деле достаточно большое участие, чему наилучший пример – Транссибирская оптическая магистраль.

Рисунок 1. Типичный световод.

Типичный световод состоит из сердцевины и оболочки. У сердцевины показатель преломления чуть-чуть больше, чем у оболочки, из-за чего световой луч испытывает практически полное внутреннее отражение на границе сердцевина-оболочка. Выполняется и сердцевина, и оболочка из кварцевого стекла. Поверх световода обычно накладывают несколько слоев защитных покрытий, улучшающих его механические и оптические характеристики. Световод со всеми этими покрытиями называют оптическим волокном. Делают световоды из полимерных материалов.

Конструкции световодов и оптических волокон очень много, но основных типов два: многомодовый и одномодовый. Диаметр сердцевины у многомодовых волокон в десятки раз превышает длину волны передаваемого излучения, из-за чего по волокну распространяется несколько типов волн (мод). Окна прозрачности кварца, из которого изготовлены световоды, находятся в области длин волн 0,85; 1,3; 1,55 мкм, а стандартные диаметры сердцевины многомодовых волокон - 50 и 62,5 мкм, вот и сравните!

У одномодового волокна диаметр сердцевины находится обычно в пределах 5-10 мкм (АТ&Т, например, стандартизировала 8,3 мкм). Это волокно называют одномодовым в соответствии со сложившейся традицией, т.е. условно: для того, чтобы по волокну передавался только один тип волны (одна мода), размер сердцевины должен быть еще меньше. Диаметр кварцевой оболочки световода тоже стандартизован и составляет 125 мкм.

Для связи на короткие расстояния чаще всего используют многомодовые волокна - они все же проще в монтаже и эксплуатации. На дальние расстояния употребляют одномодовые волокна - они имеют значительно меньшее затухание и уменьшенную дисперсию светового импульса, хотя их сложнее и монтировать, и эксплуатировать.

Параметр «затухание» характеризует ослабление мощности светового потока при передаче по оптическому волокну. Он подобен параметру электрических кабелей и также измеряется в дБ/км. Дисперсия импульса - это его «размывание» при распространении по оптоволокну. Поначалу высокий и стройный, импульс при передаче оседает и толстеет. Если два импульса расположены рядом, то по мере прохождения по волокну из-за дисперсии они наползают друг на друга и в конце концов перестают различаться Дисперсия импульса зависит от затухания, микронеоднородностей, микротрещин, от внутренней структуры материала световода и еще от многих факторов.

Рисунок 2. Конструкция сложного оптического кабеля.

Световые импульсы образуются при модуляции источника излучения - лазера или светодиода. Для передачи от источника к волокну очень важна апертура, т. е. действующий раскрыв на входе световода. Апертура зависит от размера сердцевины волокна и от согласования источника с оптоволокном. При неудачном согласовании лишь небольшая доля мощности от передатчика попадает в световод, а остальная энергия отражается. Наоборот, если апертура хорошо согласована с источником, то такое сочетание очень эффективно: вся энергия попадает в световод.

Голый световод плохо переносит всяческие воздействия - изгибы растяжения, влагу, и поэтому его покрывают защитными материалами (лаками, пластиками), окружают кевларовыми волокнами. И хотя сам световод имеет диаметр 125 мкм, с покрытиями его размер достигает 0,5 мм и более. В таком виде оптоволокно уже можно помещать в кабель теперь оно сможет противостоять внешним воздействиям. При конструировании кабеля принимают еще дополнительные меры по защите волокон: упрятывают оптические волокна в толстые пластиковые трубки, рядом укладывают упрочняющие стальные и пластмассовые стержни, а весь внутренний объем кабельной оболочки часто заполняют гидрофобным (водоотталкивающим) материалом или толстыми и прочными пучками пластиковых волокон.

Конструкции оптических кабелей различны. Встречаются кабели с небольшим количеством волокон. Но чаще они представляют собой сложные агрегаты, содержащие множество оптических волокон, помещенных в специальные модули, дополненные еще различными несущими, защитными, питающими и другими элементами (рис. 2.3) Все зависит от назначения оптического кабеля. Есть конструкции, где оптические волокна лежат свободно в трубках и "звездочках", но есть и такие, где они крепко зажаты в прозрачной ленте из пластмассы. В линиях связи широко применяются оба типа кабеля.

Рисунок 3. Конструкция оптического кабеля.

Крайне важна заделка оптоволокна в разъем - ведь от этого зависит эффективность перехода световых импульсов в местах соединений. Поэтому во всех инструкциях по волоконно-оптическим линиям связи на подготовку и заделку оптических разъемов обращают особое внимание. Заделанный в разъеме конец оптоволокна герметизируют клеем, эпоксидной смолой или другим заполнителем. Затем пристальное внимание обращается обычно на радиус изгиба оптического кабеля. При недостаточно большом радиусе изгиба увеличивается затухание тракта, а при слишком маленьком возможны поломки световедущих частей оптических кабелей.

Операция по изгибанию оптического кабеля выполняется не как с медными кабелями (просто в пространстве), а на специальной полке, где аккуратно изогнутые кольца и петли из оптического кабеля тщательно закрепляют. Само собой разумеется, что и соединители для оптических линий изготавливают более тщательно, чем обычные, а заделку в них оптоволокна выполняют часто под микроскопом, оснащенным хорошим дисплеем.

Рисунок 4. Заделка оптоволокна в разъем.

Уже давно и успешно по оптоволокну передают потоки в 155 Мбит/с - в системах связи это первая ступень синхронной цифровой иерархии. Недавно освоили вторую ступень - 622 Мбит/с и быстро осваивают третью - 2,5 Гбит/с (в России такая оптическая линия намечена между Москвой и Петербургом). Поговаривают и о четвертой ступени (10 Гбит/с), но действующих линий с таким темпом нет.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)