АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пункт 1. Численное решение дифференциальных уравнений

Читайте также:
  1. G. Все перечисленное
  2. V. Оцінювання правописних (орфографічних і пунктуаційних) умінь учнів
  3. VI. ЭТАП Определения лица (группы лиц) принимающих решение.
  4. VІІ. Пункція кісткового мозку. Пунктат кісткового мозку можна отримати з тіла грудини, великогомілкової або здухвинної кістки.
  5. А если и может, то Конституционный суд отменит это решение в пять минут.
  6. Альтернативное разрешение споров
  7. Быстрый поиск (выполнить 3 пункта)
  8. В заданиях 10-14 запишите ответ в отведенном для этого поле. Для заданий 11,12,13 запишите полное решение.
  9. В заданиях 10-14 запишите ответ в отведенном для этого поле. Для заданий 11,12,13 запишите полное решение.
  10. В палатах отделений больниц в сельских населенных пунктах увлажнение воздуха в приточных вентиляционных установках допускается не предусматривать.
  11. В) таможенная стоимость товаров, предусмотренная абзацем первым пункта 22 настоящих Правил, отсутствует или не может быть применена.
  12. Влияние на решение о покупке

При решении научных и инженерно-технических задач часто бывает необходимо математически описать какую-либо динамическую систему. Лучше всего это делать в виде дифференциальных уравнений (ДУ) или системы дифференциальных уравнений. Наиболее часто они такая задача возникает при решении проблем, связанных с моделированием кинетики химических реакций и различных явлений переноса (тепла, массы, импульса) – теплообмена, перемешивания, сушки, адсорбции, при описании движения макро- и микрочастиц.

Точное (аналитическое) решение (общее или частное) дифференциального уравнения подразумевает получение искомого решения (функции y(x)) в виде выражения от элементарных функций. Это возможно далеко не всегда даже для уравнений первого порядка.

Численное решение ДУ (частное) заключается в вычислении функции y(x) и ее производных в некоторых заданных точках , лежащих на определенном отрезке. То есть, фактически, решение ДУ n-го порядка вида получается в виде следующей таблицы чисел (столбец значений старшей производной вычисляется подстановкой значений в уравнение):

X y y'   y(n-1)
x1 y(x1) y'(x1) y(n-1)(x1)
x2 y(x2) y'(x2) y(n-1)(x2)
         
xN y(xN) y'(xN) y(n-1)(xN)

 

Например, для дифференциального уравнения первого порядка таблица решения будет представлять собой два столбца – x и y.

Множество значений абсцисс в которых определяется значение функции, называют сеткой, на которой определена функция y(x). Сами координаты при этом называют узлами сетки. Чаще всего, для удобства, используются равномерные сетки, в которых разница между соседними узлами постоянна и называется шагом сетки или шагом интегрирования дифференциального уравнения

или , i = 1, …, N

Для определения частного решения необходимо задать дополнительные условия, которые позволят вычислить константы интегрирования. Причем таких условий должно быть ровно n. Для уравнений первого порядка – одно, для второго - 2 и т.д.

Рассмотрим основной численный метод решения задачи Коши (начальной задачи) обыкновенных дифференциальных уравнений первого порядка. Запишем данное уравнение в общем виде, разрешенном относительно производной (правая часть уравнения не зависит от первой производной):

Необходимо найти значения функции y в заданных точках сетки , если известны начальные значения , где есть значение функции y(x) в начальной точке x0.

Преобразуем уравнение умножением на dx

И проинтегрируем левую и правую части между i-ым и i+1-ым узлами сетки.

Получили выражение для построения решения в i+1 узле интегрирования через значения x и y в i-ом узле сетки. Сложность, однако, заключается в том, что интеграл в правой части есть интеграл от неявно заданной функции, нахождение которого в аналитическом виде в общем случае невозможно. Численные методы решения ОДУ различным способом аппроксимируют (приближают) значение этого интеграла для построения формул численного интегрирования ОДУ.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)