АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Проверка значимости коэффициентов простой линейной регрессии и адекватности регрессионной модели

Читайте также:
  1. II. Элементы линейной и векторной алгебры.
  2. Абсолютные и относительные показатели силы связи в уравнениях парной регрессии.
  3. Автокорреляция остатков модели регрессии. Последствия автокорреляции. Автокорреляционная функция
  4. Автокорреляция уровней временного ряда. Анализ структуры временного ряда на основании коэффициентов автокорреляции
  5. Актуализация опорных знаний. Проверка д/з.
  6. Алгоритм оценки и проверки адекватности нелинейной по параметрам модели (на примере функции Кобба-Дугласа).
  7. Алгоритм проверки адекватности множественной регрессионной модели (сущность этапов проверки, расчетные формулы, формулировка вывода).
  8. Алгоритм проверки адекватности парной регрессионной модели.
  9. Алгоритм проверки адекватности парной регрессионной модели.
  10. Алгоритм проверки значимости регрессоров во множественной регрессионной модели: выдвигаемая статистическая гипотеза, процедура ее проверки, формулы для расчета статистики.
  11. Анализ коэффициентов ликвидности_________ за 201_-201_
  12. Анализ коэффициентов, характеризующих финансовое состояние банка

1. F-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы H(нулевой) 0 о статистической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнение фактического Fфакт и критического (табличного) Fтабл значений F-критерия Фишера. Fфакт определяется из соотношения значений факторной и остаточной дисперсий, рассчитанных на одну степень свободы:

где n – число единиц совокупности;

m – число параметров при переменных x.

Fтабл – это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости a. Уровень значимости a – вероятность отвергнуть правильную гипотезу при условии, что она верна. Обычно a принимается равной 0,05 или 0,01.

Если Fтабл< Fфакт, то H0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность. Если Fтабл> Fфакт, то H0 – гипотеза не отклоняется и признается статистическая незначимость, надежность уравнения регрессии.

2. t-критерий Стьюдента используется для оценки статистической значимости коэффициентов регрессии и коэффициента корреляции.

В качестве основной гипотезы вы­двигают гипотезу H0 о незначимом отличии от нуля параметра регрессии или коэффициента корреляции. Альтернативной гипотезой, при этом является гипотеза обратная, т.е. о неравенстве нулю параметра или коэффициента корреляции.

Фактические значения t -критерия определяются по формулам:

где

Для проверки гипотезы о незначимом отличии от нуля коэффициента линейной парной корреляции используют критерий:

где r - оценка коэффициента корреляции, полученная по наблюдаемым данным. tтабл остается прежним.

 


1 | 2 | 3 | 4 | 5 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.)