АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обезвоживание и обессоливание нефти

Читайте также:
  1. D. ЖАЖДА/ОБЕЗВОЖИВАНИЕ
  2. Базовые принципы переработки нефти.
  3. Влияние нефти на зооценозы
  4. Вопрос № 7. Унификация технологических схем подготовки нефти и газа.
  5. Время, продолжительность и скорость формирования залежей нефти и газа Методы определения времени формирования залежей нефти и газа
  6. Геохимия органического вещества пород и нефти в Беларуси
  7. Гипотезы происхождения нефти
  8. Глава 4. Блок-схема влияния нефти на состояние морских биоценозов
  9. Деградация нефти в море
  10. Ловушки нефти и газа морфологические и генетические классификации
  11. Неуглеводородные компоненты нефти
  12. НЕФТИ И ГАЗА им. И.М. ГУБКИНА

1. Термо – химический метод

Это наиболее распространённый в России метод, впервые применённый ещё в 1914 г. В настоящее время до 80 % добываемой в России нефти подготавливается подобным способом. Существует несколько разновидностей термохимического метода. Наиболее распространены установки, работающие под атмосферным давлением (рис. 73).

Обезвоживание и обессоливание водо – нефтяных эмульсий на этих установках осуществляется в две стадии. На первой стадии реализуется обезвоживание продукции, на второй обессоливание. Исходная водо – нефтяная эмульсия поступает на установку потоком I и накапливается в сырьевом резервуаре 1. Разумеется, эмульсия уже полностью разгазирована. В сырьевом резервуаре может происходить частичное отделение воды. В этом случае она сбрасывается в поток сточной воды – IV. По мере необходимости исходная эмульсия забирается насосом 2 и после смешения с деэмульгатором (поток III) нагревается до 50 – 600С в любом подогревающем устройстве (в данном случае это теплообменник 3 чаще всего с плавающей головкой или линзовым компенсатором, реже типа
труба в трубе).

Рис. 73. Технологическая схема установки обезвоживания и обессоливания нефти при атмосферном давлении

Подогретая эмульсия подаётся на отстой в резервуар 4 под водяную подушку. Опытным путём установлено, что высота водяной подушки должна быть порядка 50 – 70 % от общей высоты жидкости в резервуаре, но не менее 2 м. Время отстоя колеблется от нескольких часов до нескольких суток. Причём, отстойные резервуары могут работать как в периодическом, так и полунепрерывном и даже непрерывном режиме. Отстоявшаяся вода сбрасывается в линию сточной воды, а частично может подаваться на вход теплообменника 3 в качестве рециркулята. Промывка исходной эмульсии сточной водой призвана ускорить процесс отстоя. Описанная первая стадия применяется в том случае, если содержание воды в исходной эмульсии превышает 2 – 5 % мас. В противном случае, первая стадия из схемы установки исключается. Для осуществления второй стадии эмульсия с помощью насоса 5 после смешения с дополнительным количеством деэмульгатора (поток VIII), который подаётся при необходимости и пресной водой (поток IX) – обычно 2 – 5 % на нефть – прокачивается через подогреватель (в данном случае печь: V- топливо, VI – воздух, VII – дымовые газы) и с температурой 50 – 650С направляется на отстой в резервуар 7. Отмытая от солей нефть потоком Х выводится с установки, а отстоявшаяся вода сбрасывается в линию сточной воды, частично возвращаясь на циркуляцию для экономии расхода пресной воды.

Подобные установки позволяют менять деэмульгаторы без изменения схемы и аппаратного оформления. Кроме того, они не только предельно просты, но и мало чувствительны к колебаниям в содержании воды в исходной эмульсии. Однако, в то же время, они характеризуются повышенными расходами деэмульгатора и тепла, а так же потерями лёгких фракций, за счет их испарения из нагретых эмульсий через клапаны резервуаров.

Термохимические установки, работающие под избыточным давлением, приведены на рис. 74.


Рис.74. Технологическая схема установки обезвоживания и обессоливания нефти при повышенном давлении

Отличие подобных установок от предыдущих (рис.73) невелико. Во – первых, на стадии обезвоживания исходная эмульсия подогревается в две стадии – до 40 – 650С в теплообменнике 3-а нефтью, прошедшей стадию обезвоживания, и до 70 – 1500С в паровом подогревателе 3-б. Во – вторых, обезвоживание осуществляется в течении 1 – 3 часов в герметичном отстойнике 4-а под давлением до 10 атм. В третьих, на стадии обессоливания нагрев также осуществляется в две стадии – в теплообменнике 3-в и печи 6, причём, в качестве теплоносителя используют обессоленную нефть. В-четвёртых, обессоливание осуществляют в две стадии – под давлением в отстойнике 4-б и без давления в резервуаре 7, предварительно охладив нефть в водяном холодильнике 8.

Подобные установки позволяют резко снизить время отстоя и расход деэмульгатора и существенно уменьшить потери лёгких фракций за счёт испарения в товарном резервуаре по сравнению с предыдущими схемами. Однако, расход тепла в них намного выше. В полностью развёрнутом виде (как на рис.74) подобные установки достаточно редки. Как правило, монтируют лишь ступень обезвоживания, а обессоливание осуществляют иными, более современными способами (см.ниже).

Термохимические установки с промывкой исходной эмульсии

Даже при решающем влиянии деэмульгатора и температуры экспериментально установлено, что до тех пор, пока в эмульсии типа В/Н нефть будет сохраняться как дисперсионная среда, сохраняется возможность всё нового образования подобной эмульсии. И лишь при замене дисперсионной среды на водяную, являющейся ненормальной для данного типа эмульсии, подобную возможность можно свети к нулю, что и было реализовано в опытной установке (не получившей распространения) ГрозНИИ и Гипровостокнефти (Рис.75).


Рис. 75. Технологическая схема установки с промывкой исходной эмульсии

Водо – нефтяная эмульсия потоком 1 через резервный сепаратор 1 при 200С под давлением 1 – 1,5 атм после смешения с деэмульгатором (поток II), насосом 2 подаётся в нижнюю часть колонны комплексной подготовки 3, в верхнюю часть которой потоком III поступает горячая (65 – 700С) пресная вода. Газы из сепаратора и колонны потоком IV выводятся с установки. Ввод эмульсии обязательно должен осуществляться в виде капель или в крайнем случае плёнки, ибо при чрезмерном распылении образуется эмульсия типа Н/В, а при чрезмерном перемешивании новые порции эмульсии типа В/Н. Эмульсия, поднимаясь в таком виде через слой воды в колонне, обезвоживается, обессоливается и насосом 4 потоком V выводится с установки. Образовавшаяся в колонне сточная вода частично выводится с установки потоком VI, а частично возвращается в процесс насосом 9 после подогрева дымовыми газами (поток IX) в печи 7 и добавки свежей порции деэмульгатора, что позволяет существенно экономить пресную воду. Опыт эксплуатации подобной установки показал, что отходящие углеводородные газы и товарная нефть уносят с собой капельки воды, что потребовало сооружения добавочных отстойников для их отделения. Кроме того, наличие промежуточных ёмкостей 5 и 8, а также насоса 6 экономически не оправдано, не говоря уже о распылении воды в печи 7 и её прямом контакте с дымовыми газами, что помимо уноса вызывает повышение и без того немалой коррозионной активности сточной воды.

Частично эти проблемы удалось решить изменив режим работы колонны так, чтобы уровень раздела фаз нефть – вода перенёсся из верхней части колонны в нижнюю. Для чего стали не пробулькивать эмульсию через слой воды, а пропускать воду через колонну, заполненную эмульсией. Однако, установка так и осталась опытной.

Существует и иная разновидность подобных установок, так называемая установка с роторно – дисковым контактором, созданная и опробованная на НК НПЗ (Рис. 76.).


Рис.76. Технологическая схема установки с роторно – дисковым контактором

Исходная эмульсия забирается насосом 2 из резервуара 1 и после подогрева в теплообменнике 3 подаётся на первую тарелку роторно – дискового контактора 4, в верхнюю часть которого потоком II поступает свежая подогретая пресная вода с добавкой деэмульгатора, поток III. Диски контактора выполнены из гидрофильного материала. Промывка эмульсии горячей водой приводит к её обезвоживанию и обессоливанию. Образовавшаяся сточная вода потоком IV выводится с установки, частично возвращаясь в аппарат в качестве горячей струи с помощью парового эжектора 5. Обезвоженная и обессоленная нефть накапливается в ёмкости 6 и с помощью насоса 7 прогоняется через теплообменник 3, где отдаёт своё тепло эмульсии, поступающей на установку. После чего, нефть накапливается в резервуаре 8 и потоком VI выводится с установки. Окончательный отстой воды осуществляется в отстойнике 6 и резервуаре 8.

 

Электрические методы разрушения водо – нефтяных эмульсий

 

Использование электрического поля для обезвоживания – обессоливания нефтей началось ещё в 1909 г. и в настоящее время получило широчайшее применение.

Если водо-нефияную эмульсию типа В/Н поместить в электрическое поле, то в результате индукции водяные глобулы дисперсной фазы поляризуются и вытягиваются в цепочки вдоль силовых линий поля. Расстояние между каплями резко сокращается, электрические силы притяжения настолько увеличиваются, что при соударениях капель «бронирующие» оболочки сдавливаются и разрушаются в результате чего происходит слияние глобул воды. Если электрическое поле переменно, то его эффективность ещё выше, т.к. водяные глобулы многократно меняют направление своего движения; возникающая при этом деформация способствует разрушению «бронирующих» оболочек. Главным элементом технологической схемы электрообезвоживающей и электрообессоливающей установки (ЭЛОУ) является электродегидратор, в котором водо-нефтяная эмульсия разрушается в электрическом поле напряженностью 1 – 3 кв/см создаваемом между двумя сетчатыми горизонтальными электродами, которые подвешаны на изоляторах на середине высоты аппарата. Эмульсия вводится в меж- или под- электродную зону, либо одновременно в обе (в этом случае используется третий электрод).

На ЭЛОУ эксплуатируются электродегидраторы 3 типов: вертикальные (объём ~ 300 м3) – на отдельных малотоннажных установках мощностью 0,6 – 1,2 млн.т/год по обессоленной нефти; шаровые (~ 600 м3) – на установках мощностью 2 – 3 млн.т/год; горизонтальные – мощностью 6 – 9 млн. /год и более.


Как правило, ЭЛОУ монтируют из 2, а иногда и 3 (и более) ступеней. Типичная технологическая схема ЭЛОУ приведена на рис. 77.

Рис. 77. Технологическая схема установки ЭЛОУ.

На первой ступени водо – нефтяная эмульсия типа В/Н (эмульсия Н/В способна вызвать короткое замыкане) потоком I после смешения с деэмульгатором – поток II насосом 1 прогоняется через паровой теплообменник 2 и поступает в смеситель 3 где перемешивается с циркулирующей смесью сточных вод первой и второй ступени. После завершения промывки жидкость поступает в электродегидратор первой ступени 4 под водяную подушку в которой реализуется термохимическое обезвоживание и обессоливание. Затем, сырьё поднимается в пространство между водяной подушкой и нижним электродом где подвергается воздействию слабого электрического поля. Наконец, смесь попадает в пространство между электродами, где подвергается максимальному воздействию. Обработанная нефть после смешения с циркулирующей водой второй ступени, пресной водой и деэмульгатором направляется на вторую ступень обезвоживания и обессоливания в электродегидратор 8 и после завершения окончательной подготовки потоком IV – потребителю. Сточные воды 1 и 2 ступени через клапана 13 сбрасываются в соответствующие ёмкости 5 и 9. Сточная вода первой ступени частично насосом 7 направляется на циркуляцию для промывки исходной эмульсии, а частично сбрасывается в канализацию 6. Сточная вода 2 ступени целиком направляется на циркуляцию как для промывки эмульсии первой ступени, так и второй ступени. Пресная вода (поток V) с помощью насоса 11 после подогрева до 60 – 700С в печах типа БН-5,4 подаётся, в основном, на промывку эмульсии перед второй ступенью и иногда и на первую ступень. Основные параметры процесса приведены в табл.25.

Табл.25.

Характеристика сырья и работы ЭЛОУ

Типичная нефть Сырьё ЭЛОУ
Плотнос кг/м3 Хлорид. мг/л Нагрев 0С Число ступен. Давл. МПа Уд.пр. м33ч Расход
Вода, % об. Д/Э, г/т Щёлочь, г/т
Сибирск Ромашк.   Арланск.   Мордово-Кармальская битумин   <300 <300 >300 <100 >100   <300 60-80 80-100 80-100 80-120 80-120     0,4-1,2 0,4-1,2 0,4-1,2 0,4-1,4 0,4-1,4   1,0-1,5 1-3 0,8-2,3 0,8-2,0 0,5-1,5 0,5-1,3   0,33 3-5 5-10 4-7 5-10 4-7   4-7   10-15 10-25 10-20 15-25   до 50 - - -   -

 

Применяемые деэмульгаторы, в основном, неионогенные подают в эмульсию в виде 1 –2 % растворов на каждую ступень, иногда, без разбавления (нефтерастворимые) только перед первой ступенью. Иногда, вместе с деэмульгатором используют щёлочь, для доведения рН сточной воды хотя бы до 7. Экономия пресной воды достигается не только за счет циркуляции сточных вод, но и за счет оптимального смешения воды и эмульсии в смесительном устройстве, регулируемого перепадом давления (от 0,05 до 0,2 МПа) на этом устройстве.

В настоящее время для обезвоживания и обессоливания тяжелых и особенно высокопарафинистых нефтей широкое применение (за рубежом) находят так называемые электростатические дегидраторы. Особое распространение эти аппараты получают там, где отсутствует пресная вода.

Сущность работы подобных аппаратов очень проста и сводится к созданию тем или иным способом статического заряда под высоким напряжением на электродах – диэлектриках, помещённых в эмульсию, или пузырьках газа, поднимающихся в этой эмульсии. Статические заряды диэлектриков или пузырьков газа взаимодействуют с полярными каплями воды, в результате чего, последние коалесцируют между собой и выпадают в дренаж.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)