АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Фотосинтетические пигменты

Читайте также:
  1. Красители. Пигментные лаки и пигменты

Выделяют три класса фотосинтетических пигментов:

1) хлорофиллы;

2) каротиноиды;

3) фикобилины.

Пигменты входят в состав пигментых систем в виде хромопротеинов. Хлорофиллы и каротиноиды с белками связываются легкими гидрофобными связями, а фикобилины – ковалентными. Хлорофиллы и каротиноиды входят в пигментную систему высших растений, а хлорофиллы и фикобилины – в пигментную систему низших растений (в том числе и водорослей).

Роль пигментов состоит в поглощении электромагнитного излучения, которое представляет собой поток фотонов с различной энергией. Энергия фотонов рассчитывается по формуле:

,

где Е – энергия фотона, эВ;

h – постоянная Планка, 6,62 · 10-27;

с – скорость света, 3 · 1010 см/сек;

λ – длина волны, нм.

Видимая часть спектра имеет длину волны 400 – 700 нм (380 – 720 нм). Энергии квантов этой части спектра достаточно для обратимого электронного возбуждения молекул. Разные пигменты поглощают разные части спектра. Это определили путем пропускания белого света через раствор пигментов с последующим его разложением. По тому, какая часть спектра выпадает после пропускания, делают вывод о том, что она поглотилась. Цвет пигмента зависит от того, какая часть спектра максимально отражается.

Явление хроматической адаптации растений – это способность синтезировать различные пигменты в зависимости от условий дыхания. Это явление хорошо иллюстрируется на водорослях. Вода изменяет спектральный состав света, поглощая, в основном, длинные волны, в результате этого на разные глубины поступает свет разного спектрального состава. На поверхности обитают зеленые водоросли, которые синтезируют аллофикоцианины; глубже обитают сине-зеленые водоросли, которые синтезируют фикоцианины; еще глубже – красные водоросли, синтезирующие фикоэритрины.

Пигменты – это органические молекулы, поэтому на них распространяется следующее правило: каждая стабильная органическая молекула содержит четное число электронов, которые попарно (с разными спинами) располагаются на низших энергетических уровнях – это основное синглетное состояние (S0). После пространственной встречи электрона с порцией света (hν), электрон поглощают энергию кванта света, становятся горячим и уже не может оставаться на низшей молекулярной орбитали, поэтому переходит на вакантную орбиталь. Такое состояние молекулы пигмента называется возбужденным синглетным состоянием (S*). Низшая орбиталь является связывающей орбиталью, а вакантная – разрыхляющей. Энергия кванта, способного вызывать такой переход, должна равняться разнице этих электронных уровней (молекулярных орбиталей). Время жизни молекулы в состоянии S* очень мало и измеряется пико- и наносекундами. Молекула старается вернуться в состояние S0 , для этого нужно высвободить запасенную энергию.

Хлорофиллы

Эмпирическая формула хлорофилла: MgN4O5H75C55. С химической точки зрения хлорофилл является сложным эфиром двух спиртов (метилового спирта и фитола) и дикарбоновой кислоты хлорофиллина:

MgN4OH30C32
С – OCH3
С – OC20H39
O
O

 

 


Структурная формула хлорофилла была расшифрована в период с 1930 по 1940 гг. немецким ученым Фишером. Порфириновое ядро молекулы сформировано 4 пиррольными кольцами, которые соединены метиловыми мостиками. Каждое пиррольное кольцо имеет атом азота, который соединен с ионом магния. В составе молекулы есть пятое циклопентановое кольцо, считается, что оно повышает реакционную способность молекулы хлорофилла. Комплекс порфириного ядра и циклопентанового кольца называется форбином. Сопряженная система связей этой структуры образована чередованием одинарных и двойных связей и включает 18 π-электронов. Положение двойных связей не фиксировано, ввиду резонанса порфириновое ядро можно изобразить несколькими способами. Заряд иона магния +2 компенсируется двумя избыточными электронами атомов азота и распределяется по 4 атомам азота.

На самых ранних этапах возникновения фотосинтеза хлорофилл был рассчитан на синюю часть спектра, но эта часть спектра преобладает только в определенные часы дня. Красная же часть спектра в составе белого света присутствует весь освещенный период и ее энергии хватает для запуска фотосинтеза.

Хлорофилл способен поглощать энергию квантов света и при этом возбуждаться. Возбужденное состояние является короткоживущим. Для возвращения электронов на более низшую орбиталь используется энергия возбужденного хлорофилла.

S2* (10-12 сек)   S1* (10-9 сек)   T* (10-4 сек)   S0
Рис. Схема утилизации энергии возбужденного состояния молекулы хлорофилла
   
 

 


Под миграцией энергии понимают то, что одна молекула пигмента может возбудить другие. Этот путь используется в работе светособирающего комплекса.

В результате отрыва электрона от молекулы хлорофилла образуется фотоокисленный продукт (окисленный хлорофилл) и фотовосстановленный продукт, который принял электрон от хлорофилла. В таких преобразованиях суть фотохимической работы.

Исходя из продолжительного времени нахождения хлорофилла в триплетном состоянии (Т*), его считают запускающим фотосинтез. Однако это достаточно редкое состояние и хлорофилл, испустивший электрон в триплетном состоянии, не восстанавливается. Триплетное состояние хлорофилла гасится, его могут брать на себя каротиноиды. Работающим является первое возбужденное синглетное состояние (S1*).

Благодаря своим свойствам молекула хлорофилла способна выполнять следующие функции:

1) избирательно поглощать часть света;

2) запасать поглощенный свет в виде энергии возбужденных электронов;

3) фотохимически преобразовывать энергию возбужденного состояния электронов в химическую энергию первичных фотоокисленных и фотовосстановленных соединений.

Роль фитольного хвоста хлорофилла состоит в заякоривании молекулы в тилакоидной мембране через образование связей с мембранными белками. Порфириновое ядро при таком фиксировании молекулы может менять свое положение с целью поглощения максимального количества квантов света.

Для процесса биосинтеза хлорофилла необходимы:

1) свет;

2) аминокислоты: глютаминовая кислота и аланин;

3) ацетилкофермент-А (источник фитола);

4) возможно также нужны α-кетоглутаровая кислота и глицин.

Известно 5 разных типов хлорофиллов: a, b, c1, c2, d. Структура порфиринового ядра у всех хлорофиллов одинакова, у хлорофиллов с отсутствует фитольный хвост. Хлорофилл а имеется у всех фотосинтезирующих организмов, у высших растений его концентрация наибольшая. Только хлорофилл а способен запускать фотохимическую работу, что было доказано в 40-х гг. ХХ в. ученым Красновским. Хлорофилл b есть у наземных растений, а также у хлорококковых и эвгленовых водорослей. Хлорофиллы c1 и c2 – у бурых, золотистых, диатомовых водорослей; у криптофитовых водорослей обнаружен только хлорофилл c2. Хлорофилл d есть у красных водорослей.

Каротиноиды

С химической точки зрения каротиноиды представляют собой полиеновые углеводороды. Они содержат 40 атомов углерода и обладают сопряженной системой связей. Каротиноиды делят на две группы:

1) каротины (чистые ненасыщенные углеводороды с общей формулой С40Н56);

2) ксантофиллы (содержат атомы кислорода в количестве 2 или 4).

Каротиноиды входят в пигментную систему и поглощают ту часть спектра, которая не поглощается хлорофиллами. Основная же функция каротиноидов – протекторная (защитная). Хлорофилл, находящийся в триплетном состоянии, подвергается необратимому окислению синглетным кислородом, каротиноиды способны принять на себя энергию триплетного состояния хлорофилла по следующей схеме:

Хлорофилл* + КаротиноидS0 → ХлорофиллS0 + КаротиноидТ*;

 

КаротиноидТ* → КаротиноидS0 + теплота


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)