|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Системы линейных уравнений. Система уравнений вида: называется системой линейных уравнений с неизвестными…Система уравнений вида: В матричной форме система имеет вид: Если Система, матрица Решением системы называется всякий упорядоченный набор чисел Система называется совместной, если она имеет, по крайней мере, одно решение; определённой, если она имеет только одно решение; неопределённой, если она имеет бесконечно много решений; несовместной, если она не имеет решений. Однородная система уравнений всегда совместна, так как всегда имеет, по крайней мере, нулевое решение Две системы называются эквивалентными, если множества их решений совпадают. Элементарными преобразованиями систем уравнений называются: 1) перестановка уравнений; 2) перестановка местами слагаемых 3) умножение уравнения на число, отличное от нуля; 4) прибавление к уравнению другого, умноженного на любое число; 5) вычёркивание уравнения вида: Основными точными методами решения систем линейных уравнений являются методы: Крамера, обратной матрицы и Гаусса. Если число уравнений в системе а) методом Крамера по формулам: б ) методом обратной матрицы по формуле Методом Гаусса находят решение произвольной системы линейных уравнений. Метод состоит в приведении системы уравнений, с помощью элементарных преобразований, к системе специального вида, эквивалентной исходной, решение которой очевидно. Преобразования по методу Гаусса выполняют в два этапа. Первый этап называют прямым ходом, второй - обратным. В результате прямого хода выясняют: совместна или нет система и если совместна то, сколько имеет решений - одно или бесконечно много, а также, в случае бесконечного множества решений, указывают базисные и свободные неизвестные для записи общего решения системы. Преобразования прямого хода выполняют, как правило, над расширенной матрицей системы В результате обратного хода находят решение системы, записывая его в виде общего решения, если их бесконечно много. Преобразования обратного хода часто выполняют, над уравнениями системы, соответствующей последней расширенной матрице Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |