|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Векторная алгебраВектором (геометрическим) называется направленный отрезок, задаваемый упорядоченной парой точек (началом и концом вектора). Обозначают вектор или . Расстояние между началом и концом вектора называется его длиной и обозначается или . Углом между векторами и называется угол , , на который следует повернуть один из векторов, чтобы его направление совпало с направлением другого вектора, при условии, что их начала совпадают. Проекцией вектора на вектор называется число . Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых. Векторы называются компланарными, если они расположены в одной плоскости или в параллельных плоскостях. Векторы и называются равными и пишут , если они коллинеарны, одинаково направлены и имеют равные длины. Векторы и называются противоположными и пишут , если они коллинеарны, направлены в разные стороны и имеют равные длины. Суммой векторов и называется вектор , соединяющий начало вектора и конец вектора , при условии, что конец вектора совпадает с началом вектора (правило треугольника). Произведением вектора на действительное число называется вектор : 1) коллинеарный вектору ; 2) имеющий длину ; 3) направленный одинаково с вектором , если , и противоположно, если . Ортом вектора , называется вектор , имеющий единичную длину и направление вектора : . Базисом в пространстве называется упорядоченная тройка некомпланарных векторов, базисом на плоскости – упорядоченная пара неколлинеарных векторов, базисом на прямой – любой ненулевой вектор на этой прямой. Базис, в котором все векторы попарно перпендикулярны и имеют единичную длину, называется ортонормированным. Векторы ортонормированного базиса обозначаются: и , и называются базисными ортами. Различают правый и левый ортонормированные базисы. Базис -называется правым, если кратчайший поворот от к совершается против хода часовой стрелки, в противном случае он – левый. Базис -называется правым, если из конца вектора кратчайший поворот от вектора к виден совершающимся против хода часовой стрелки, в противном случае он – левый. Условием коллинеарности векторов и является равенство: , где - некоторое число. Условием компланарности векторов , и является равенство: , где - некоторые числа. Всякий геометрический вектор может быть разложен единственным образом по векторам базиса, коэффициенты разложения называются при этом координатами вектора в данном базисе. Например, если - базис и , то всегда существует единственное разложение: , где числа - координаты вектора в базисе , при этом пишут . Если в зафиксирован ортонормированный базис и , то равносильны записи: и (в записи вектора в координатной форме ортонормированный базис не указывают). Представление геометрических векторов в координатной форме, позволяет выполнять действия над ними, как над арифметическими векторами: ; . Декартовой прямоугольной системой координатв пространстве называется совокупность точки (начало координат) и правого ортонормированного базиса и обозначается . Прямые , , , проходящие через начало координат в направлении базисных векторов, называются координатными осями: первая – осью абсцисс, вторая – осью ординат, третья – осью аппликат. Плоскости, проходящие через оси координат, называются координатными плоскостями. Аналогично вводится система координат на плоскости: . Пусть - произвольная точка пространства, в котором введена система координат = . Радиус-вектором точки называется вектор , который всегда единственным образом можно представить в виде: . Числа , являющиеся координатами радиус-вектора, совпадают с проекциями вектора на базисные орты и (на координатные оси и ). Координатами точки в системе координат называются координаты её радиус-вектора и пишут . В свою очередь, координаты точки полностью определяют её радиус-вектор . Всякий геометрический вектор в системе координат , всегда можно представить как радиус-вектор некоторой точки и записать в виде: . Длина вектора , заданного координатами , определяется формулой: . Направляющими косинусами вектора называются числа: , , , при этом . Координаты вектора , заданного точками и определяются по формуле: . Расстояние между точками и определяется как длина вектора и находится по формуле: . Координаты точки делящей отрезок пополам находятся по формулам: , , . Скалярным произведением векторов и называется число . Скалярное произведение обладает свойствами: 1) ; 2) где - число; 3) ; 4) 5) ; 6) , , , , , . Для векторов и , заданных своими координатами , скалярное произведение вычисляется по формуле: . Скалярное произведение применяют: 1) для вычисления угла между векторами и по формуле: ; 2) для вычисления проекции вектора на вектор по формуле: ; 3) для вычисления длины вектора по формуле: ; 4) в качестве условия перпендикулярности векторов и : . Векторным произведением векторов и называется вектор , определяемый условиями: 1) ; 2) и ; 3) - правая тройка векторов. Упорядоченная тройка некомпланарных векторов называется правой тройкой, если из конца третьего вектора , кратчайший поворот от первого вектора ко второму , виден совершающимся против хода часовой стрелки. В противном случае, тройка называется левой. Векторное произведение обладает свойствами: 1) ; 2) , где - число; 3) ; 4) 5) ; 6) , , , , , . Для векторов и , заданных своими координатами , векторное произведение вычисляется по формуле: . Векторное произведение применяют: 1) для вычисления площадей треугольника и параллелограмма, построенных на векторах и , как на сторонах, по формуле: ; 2) в качестве условия параллельности векторов и : . Смешанным произведением упорядоченной тройки векторов , и называется число . Смешанное произведение обладает свойствами: 1) ; 2) ; 3) ; 4) и -компланарны ; 5) , где -объём параллелепипеда, построенного на векторах , и . Для векторов , и , заданных своими координатами , , смешанное произведение вычисляется по формуле: . Смешанное произведение применяют: 1) для вычисления объёмов тетраэдра и параллелепипеда, построенных на векторах , и , как на рёбрах, по формуле: ; 2) в качестве условия компланарности векторов , и : и - компланарны. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.) |