АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение. 1а)Вычисляем определитель системы и проверяем, что он отличен от нуля:

Читайте также:
  1. Волновое уравнение для упругих волн и его общее решение.
  2. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  3. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс. Резонансные кривые.
  4. Дифференциальное уравнение затухающих колебаний и его решение. Основные характеристики затухающих колебаний. Логарифмический декремент затухания. Апериодический процесс.
  5. Рациональное управленческое решение. Способы принятия рационального решения. Списки. Дерево решений. Причинно-следственные диаграммы.
  6. Решение.
  7. Решение.
  8. Решение.
  9. Решение.
  10. Решение.
  11. Решение.
  12. Решение.

А) Метод Крамера.

1а) Вычисляем определитель системы и проверяем, что он отличен от нуля:

.

2а) Так как , то система имеет единственное решение, определяемое формулами Крамера:

3а) Вычисляем определители :

,

,

.

4а) Находим решение: .

5а) Выполняем проверку: .

Ответ: .

Б) Метод обратной матрицы.

1б) Записываем систему уравнений в матричном виде:

или

2б) Вычисляем определитель системы и проверяем, что он отличен от нуля:

3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой:

или

4б) Находим обратную матрицу (методом присоединённой матрицы):

.

Тогда .

5б) Находим решение:

.

6б) Выполняем проверку: .

Ответ: .

В) Метод Гаусса.

1в) Записываем расширенную матрицу системы:

.

2в) Выполняем прямой ход метода Гаусса.

В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений.

. В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход.

Замечание. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений.

3в) Выполняем обратный ход метода Гаусса.

Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: .

4в) Выполняем проверку: .

Ответ: .

 

4. Найти общее решение для каждой из данных систем методом Гаусса:

а) .


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)