|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Решение. 1а)Вычисляем определитель системы и проверяем, что он отличен от нуля:А) Метод Крамера. 1а) Вычисляем определитель системы и проверяем, что он отличен от нуля: . 2а) Так как , то система имеет единственное решение, определяемое формулами Крамера: 3а) Вычисляем определители : , , . 4а) Находим решение: . 5а) Выполняем проверку: . Ответ: . Б) Метод обратной матрицы. 1б) Записываем систему уравнений в матричном виде: или 2б) Вычисляем определитель системы и проверяем, что он отличен от нуля: 3б) Так как , то матрица системы имеет обратную матрицу и единственное решение системы определяется формулой: или 4б) Находим обратную матрицу (методом присоединённой матрицы): .
Тогда . 5б) Находим решение: . 6б) Выполняем проверку: . Ответ: . В) Метод Гаусса. 1в) Записываем расширенную матрицу системы: . 2в) Выполняем прямой ход метода Гаусса. В результате прямого хода матрица системы должна быть преобразована с помощью элементарных преобразований строк к матрице треугольного или трапециевидного вида с элементами . Система уравнений, матрица которой является треугольной с элементами , имеет единственное решение, а система уравнений, матрица которой является трапециевидной с элементами , имеет бесконечно много решений. . В результате элементарных преобразований матрица системы преобразована к специальному виду . Система уравнений, матрица которой , является треугольной с ненулевыми диагональными элементами , имеет всегда единственное решение, которое находим, выполняя обратный ход. Замечание. Если при выполнение преобразования расширенной матрицы в преобразованной матрице появляется строка , где , то это говорит о несовместности исходной системы уравнений. 3в) Выполняем обратный ход метода Гаусса. Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: и последовательно из уравнений системы, начиная с последнего, находим значения всех неизвестных: . 4в) Выполняем проверку: . Ответ: .
4. Найти общее решение для каждой из данных систем методом Гаусса: а) . Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |