Решение. а)Длинырёбер и находим как длины векторов и
а) Длинырёбер и находим как длины векторов и :
;
;
;
.
б) Угол между рёбрами и находим как угол между векторами и по формуле: . Учитывая, что: , , получим . Откуда
в) Площадь грани находим, используя геометрический смысл векторного произведения векторов, по формуле . Учитывая, что:
, , получим .
г) Объём пирамиды находим, используя геометрический смысл смешанного произведения векторов, по формуле . Учитывая, что:
,
,
получим .
д) Уравнение плоскости грани находим как уравнение плоскости, проходящей через точки , и , и записываем его в виде общего уравнения плоскости:
е) Длину высоты пирамиды находим как расстояние от точки до плоскости , заданной общим уравнением :
.
Ответ: а) , ; б) ; в) ;
г) ; д) ; е) .
9. Даны комплексные числа , , и алгебраическое уравнение . Требуется: а) вычислить , , ; б) представить комплексное число в тригонометрической форме, вычислить и результат представить в алгебраической форме; в) найти все корни алгебраического уравнения на множестве комплексных чисел. 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Поиск по сайту:
|