АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение. а)Длинырёбер и находим как длины векторов и

Читайте также:
  1. Волновое уравнение для упругих волн и его общее решение.
  2. Волновое уравнение и его решение. Физический смысл волнового уравнения. Скорость распространения волн в различных средах.
  3. Дифференциальное уравнение вынужденных колебаний и его решение. Резонанс. Резонансные кривые.
  4. Дифференциальное уравнение затухающих колебаний и его решение. Основные характеристики затухающих колебаний. Логарифмический декремент затухания. Апериодический процесс.
  5. Рациональное управленческое решение. Способы принятия рационального решения. Списки. Дерево решений. Причинно-следственные диаграммы.
  6. Решение.
  7. Решение.
  8. Решение.
  9. Решение.
  10. Решение.
  11. Решение.
  12. Решение.

а) Длинырёбер и находим как длины векторов и :

;

;

;

.

б) Угол между рёбрами и находим как угол между векторами и по формуле: . Учитывая, что: , , получим . Откуда

в) Площадь грани находим, используя геометрический смысл векторного произведения векторов, по формуле . Учитывая, что:

, , получим .

г) Объём пирамиды находим, используя геометрический смысл смешанного произведения векторов, по формуле . Учитывая, что:

,

,

получим .

д) Уравнение плоскости грани находим как уравнение плоскости, проходящей через точки , и , и записываем его в виде общего уравнения плоскости:

е) Длину высоты пирамиды находим как расстояние от точки до плоскости , заданной общим уравнением :

.

Ответ: а) , ; б) ; в) ;

г) ; д) ; е) .

9. Даны комплексные числа , , и алгебраическое уравнение . Требуется: а) вычислить , , ; б) представить комплексное число в тригонометрической форме, вычислить и результат представить в алгебраической форме; в) найти все корни алгебраического уравнения на множестве комплексных чисел.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)