Решение. 1а)Записываем расширенную матрицу системы:
1а) Записываем расширенную матрицу системы:
.
2а) Выполняем прямой ход метода Гаусса.
.
Матрица системы приведена к трапециевидному виду с ненулевыми диагональными элементами. Соответствующая такой матрице система уравнений имеет бесконечно много решений, которые находим, выполняя обратный ход, и записываем в виде общего решения. Для записи общего решения указываем её базисные и свободные неизвестные. Базисный минор матрицы системы образуют столбцы коэффициентов при неизвестных и : . Поэтому выбираем в качестве базисных – неизвестные и , тогда свободными будут неизвестные и .
3а) Выполняем обратный ход метода Гаусса.
Записываем систему уравнений, соответствующую последней расширенной матрице прямого хода: . Свободным неизвестным придаём разные, произвольные постоянные значения: , , и последовательно из уравнений системы, начиная с последнего, находим значения всех базисных неизвестных: .
Тогда общее решение системы запишется в виде: .
4а) Выполняем проверку:
.
Ответ: .
б) . 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Поиск по сайту:
|