|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Матрицы. Матрицей размера называется прямоугольная таблица из чисел ( ,Матрицей размера называется прямоугольная таблица из чисел (, ): , состоящая из строк и столбцов. Если необходимо указать размеры матрицы, то пишут . Если , то матрица называется квадратной. Нулевой называется матрица , все элементы которой равны нулю, например: . Единичной называется квадратная матрица , на главной диагонали которой стоят единицы, а все остальные элементы равны нулю, например: . Треугольной называется квадратная матрица , все элементы которой расположенные по одну сторону от главной диагонали равны нулю, например: . Трапециевидной (ступенчатой) называется матрица , все элементы которой, расположенные ниже элементов равны нулю, например: . Матрицы и называются равными и пишут , если они одинакового размера и их соответствующие элементы равны: , , . Матрицы можно транспонировать, складывать, вычитать, умножать на число, умножать на другую матрицу. Транспонированной к матрице называется матрица , столбцами которой являются соответствующие строки матрицы . Суммой (разностью) матриц и одного размера , называется матрица того же размера, для которой: , , . Произведением матрицы размера на число называется матрица того же размера, для которой: , , . Линейной комбинацией матриц и одного размера , называется матрица того же размера ( и - произвольные числа), для которой: , , , Произведением матрицы на матрицу называется матрица , каждый элемент которой вычисляется по правилу: , , . Операция умножения матрицы на матрицу определена не для всех матриц, а только для таких у которых число столбцов левой матрицы равно числу строк правой матрицы . Такие матрицы называются согласованнымидля умножения. Поэтому прежде чем выполнять операцию умножения матрицы на матрицу следует проверить их согласованность для умножения и определить размерность матрицы-произведения (если умножение матриц возможно): . Особенность операции умножения матриц состоит в том, что в общем случае: , т.е. переместительное свойство места не имеет. Элементарными преобразованиями матрицы называются: 1) перестановка строк (столбцов); 2) умножение строки (столбца) на число, отличное от нуля; 3) прибавление к элементам строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число; 4) вычёркивание нулевой строки (столбца). Матрицы и , полученные одна из другой в результате элементарных преобразований называются эквивалентными и пишут . Обратной к квадратной матрице порядка , называется матрица того же порядка, если: , где - единичная матрица порядка . Квадратная матрица называется невырожденной, если её определитель . Обратная матрица всегда существует для невырожденных матриц. Основными методами вычисления обратной матрицы являются: Метод присоединённой матрицы. Если -невырожденная матрица, то , где - присоединённая матрица, для которой: . Здесь - алгебраические дополнения элементов матрицы . В частности, если , то Метод элементарных преобразований. Для данной квадратной матрицы порядка строится прямоугольная матрица размера приписыванием к справа единичной матрицы. Далее, с помощью элементарных преобразований над строками, матрица приводится к виду , что всегда возможно, если - невырожденная. Матричными называются уравнения вида: , , , где матрицы - известны, матрица - неизвестна. Если квадратные матрицы и - невырожденные, то решения матричных уравнений записываются, соответственно, в виде: , , . Минором -ого порядка матрицы размера называется определитель квадратной матрицы порядка , образованной элементами матрицы , стоящими на пересечении произвольно выбранных её строк и столбцов . Максимальный порядок отличных от нуля миноров матрицы , называется её рангом и обозначается или , а любой минор порядка , отличный от нуля – базисным минором. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |