|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Локальная теорема ЛапласаПри решении примеров, рассмотренных ранее, вычисление вероятностей не вызывало затруднений, так как число испытаний n было невелико. Однако, если число испытаний достаточно велико, то использование формулы Бернулли нецелесообразно в силу необходимости выполнения громоздких вычислений. Например, требуется вычислить P 320(285) при p= 0,89. . Получить здесь более или менее точный результат практически невозможно. Теорема 4.1. Локальная теорема Лапласа, представляет собой асимптотическую формулу, которая позволяет приближенно найти вероятность появления события ровно m раз в n испытаниях, если число испытаний достаточно велико. (4.3) (4.4) – функция Гаусса; (4.5) Для упрощения расчетов по формуле (4.3) составлены таблицы, в которых помещены значения функции , соответствующие положительным значениям аргумента х. Для отрицательных значений аргумента пользуются теми же таблицами, так как функция четная, то есть . Такие таблицы обычно приводятся в различных учебниках, справочниках по теории вероятностей и математической статистике. Пример 4.2. Два спортсмена играют в настольный теннис. Вероятность выигрыша первого спортсмена равна 5/9. Какова вероятность того, что он выиграет две партии из пяти? Решение: , , , . . Найдем значение аргумента . По таблицам находим Искомая вероятность, равна: . Проверим полученный результат, воспользовавшись формулой Бернулли. Имеем: . Расхождение ответов объясняется тем, что формула (4.3) дает хорошее приближение при больших значениях n, а в данном случае n = 5. Формула (4.3) позволяет получить более близкие к точному значению результаты, чем больше значение и чем ближе значения p и q к 0,5. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |