|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Локальная теорема ЛапласаПри решении примеров, рассмотренных ранее, вычисление вероятностей не вызывало затруднений, так как число испытаний n было невелико. Однако, если число испытаний достаточно велико, то использование формулы Бернулли нецелесообразно в силу необходимости выполнения громоздких вычислений. Например, требуется вычислить P 320(285) при p= 0,89. Получить здесь более или менее точный результат практически невозможно. Теорема 4.1. Локальная теорема Лапласа, представляет собой асимптотическую формулу, которая позволяет приближенно найти вероятность появления события ровно m раз в n испытаниях, если число испытаний достаточно велико.
Для упрощения расчетов по формуле (4.3) составлены таблицы, в которых помещены значения функции Пример 4.2. Два спортсмена играют в настольный теннис. Вероятность выигрыша первого спортсмена равна 5/9. Какова вероятность того, что он выиграет две партии из пяти? Решение:
Найдем значение аргумента По таблицам находим
Проверим полученный результат, воспользовавшись формулой Бернулли. Имеем:
Расхождение ответов объясняется тем, что формула (4.3) дает хорошее приближение при больших значениях n, а в данном случае n = 5. Формула (4.3) позволяет получить более близкие к точному значению Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |