АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Метод Гаусса. Суть метода Гаусса заключается в последовательном исключении неизвестных из уравнений системы, т.е

Читайте также:
  1. I этап Подготовка к развитию грудобрюшного типа дыхания по традиционной методике
  2. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  3. I. Методические основы
  4. I. Методические основы оценки эффективности инвестиционных проектов
  5. I. Предмет и метод теоретической экономики
  6. I. Что изучает экономика. Предмет и метод экономики.
  7. I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
  8. II. Метод упреждающего вписывания
  9. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  10. II. Методы непрямого остеосинтеза.
  11. II. Проблема источника и метода познания.
  12. II. Рыночные методы.

Суть метода Гаусса заключается в последовательном исключении неизвестных из уравнений системы, т.е. приведении основной матрицы системы к треугольному виду, когда под ее главной диагональю стоят нули. Это достигается с помощью элементарных преобразований матрицы над строчками. В результате таких преобразований не нарушается равносильность системы, и она приобретает также треугольный вид, т. е. последнее уравнение содержит одну неизвестную, предпоследнее – две и т. д. Выражают из последнего уравнения n-ую неизвестную и с помощью обратного хода, используя ряд последовательных подстановок, получают значения всех неизвестных.

Пример. Решить систему уравнений методом Гаусса

1 + 2х2 + х3 = 17

1 - х2 + 2х3 = 8.

х1 + 4х2 - 3х3 = 9

Решение. Выпишем расширенную матрицу системы и приведем содержащуюся в ней матрицу А к треугольному виду.

В = .

Поменяем местами первую и третью строки матрицы, что равносильно перестановке первого и третьего уравнений системы. Это позволит нам избежать появления дробных выражений при последующих вычислениях

В ~ .

Первую строку полученной матрицы умножим последовательно на (-2) и (-3) и сложим соответственно со второй и третьей строками, при этом В будет иметь вид:

В ~.

После умножения второй строки на и сложения ее с третьей строкой матрица А примет треугольный вид. Однако, чтобы упростить вычисления, можно поступить следующим образом: умножим третью строку на (-1) и сложим со второй. Тогда получим:

В ~ .

Далее, умножая вторую строку матрицы на 10 и складывая с третьей, окончательно получим:

В ~ .

Восстановим из полученной матрицы В систему уравнений, равносильную данной

х1 + 4х2 - 3х3 = 9

х2 - 2х3 = 0

- 10х3 = -10

Из последнего уравнения находим Найденное значение х3 = 1 подставим во второе уравнение системы, из которого х2 = 2х3 = 2 × 1 = 2.

После подстановки х3 = 1 и х2 = 2 в первое уравнение для х1 получим х1 = 9 - 4х2 + 3х3 = 9 - 4 × 2 + 3 × 1 = 4.

Итак, х1 = 4, х2 = 2, х3 = 1.

Замечание. Для проверки правильности решения системы уравнений необходимо подставить найденные значения неизвестных в каждое из уравнений данной системы. При этом, если все уравнения обратятся в тождества, то система решена верно.

Проверка:

3 × 4 + 2 × 2 + 1 = 17 верно

2 × 4 - 2 + 2 × 1 = 8 верно

4 + 4 × 2 - 3 × 1 = 9 верно

Итак, система решена верно.

Решить системы уравнений методом Гаусса:

75. . 76. .

77. . 78. .

79. . 80. .

81. . 82. .

83. . 84. .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)