АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Пример 2. Определение 4. Системы уравнений называются однородными, если свободные члены во всех её уравнения р

Читайте также:
  1. X. примерный перечень вопросов к итоговой аттестации
  2. Буду на работе с драконом примерно до 21:00.
  3. Булевы функции. Способы задания. Примеры.
  4. В некоторых странах, например в США, президента заменяет вице-
  5. В примере
  6. В странах Востока (на примере Индии и Китая)
  7. Вания. Одной из таких областей является, например, регулирова-
  8. Вашим сообщениям, например, спеть «С днем рождения»
  9. Виды знания. Контрпример стандартному пониманию знания
  10. Власть примера. Влияние с помощью харизмы
  11. Внешний долг (внешняя задолженность): пример России
  12. Вопрос 11. Герои романтических поэм М. Ю. Лермонтова (на примере одного произведения).

.

Ответ: .

Однородные системы

Определение 4. Системы уравнений называются однородными, если свободные члены во всех её уравнения равны нулю.

Если определитель однородной системы линейных уравнений не равен нулю, то система линейных уравнений имеет единственное нулевое решение (тривиальное) .

Если определитель равен нулю, то однородная система линейных уравнений имеет бесконечное множество решений (не тривиальных) и находится как общее решение системы линейных уравнений.

Примеры решения задач


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)