АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Действия с операторами и их матрицами

Читайте также:
  1. ACCSUNIT (С. Права на действия в каталогах)
  2. I. ПРОБЛЕМЫ ВЗАИМОДЕЙСТВИЯ ПРИРОДЫ И ОБЩЕСТВА
  3. II. Пути противодействия психологическому воздействию противника.
  4. IV. Определите, какую задачу взаимодействия с практическим психологом поставил перед собой клиент.
  5. V2: ДЕ 4 – Линейные отображения. Линейные операции над матрицами
  6. VI Обжалование решений, действий (бездействия) таможенных органов и их должностных лиц
  7. VI. Срок действия служебного контракта
  8. VII. По степени завершенности процесса воздействия на объекты защиты
  9. АВТОМАТИЧЕСКИЕ ВЕСОВЫЕ ДОЗАТОРЫ НЕПРЕРЫВНОГО ДЕЙСТВИЯ
  10. АВТОМАТИЧЕСКИЕ ВЕСОВЫЕ ДОЗАТОРЫ ПОРЦИОННОГО ДИСКРЕТНОГО ДЕЙСТВИЯ
  11. Аккультурация в межкультурных взаимодействиях
  12. Активность и степень воздействия на другие государственные орга-

Постановка задачи. В некотором базисе трехмерного пространства заданы линейные преобразования

где – произвольный вектор.

Найти координаты вектора , где – многочлен относительно операторов и .

План решения.

Так как при сложении операторов их матрицы складываются, при умножении на число – умножаются на это число, а матрица композиции операторов равна произведению их матриц, то нужно найти матрицу , где и – матрицы операторов и . Затем столбец координат вектора находим по формуле , где – столбец координат вектора .

1. Выписываем матрицы операторов и :

.

2. По правилам сложения матриц, умножения матрицы на число и умножения матриц находим матрицу :

.

3. Находим столбец координат образа вектора :

.

Откуда .

Задача 6. Пусть , , . Найти

.

Матрицы операторов и :

.

Находим:

.

.

Таким образом .

 

Перейти к содержанию

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)