|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Теорема о скоростях точекРис.11 Рис. 12 2. Ускорения точек тела. Для нахождения ускорения точки М воспользуемся формулами
В нашем случае ρ=h. Подставляя значение v в выражения aτ и an, получим:
или окончательно:
Касательная составляющая ускорения aτ направлена по касательной к траектории (в сторону движения при ускоренном вращении тела и в обратную сторону при, замедленном); нормальная составляющая an всегда направлена по радиусу МС к оси вращения (рис.12). Полное ускорение точки М будет
Отклонение вектора полного ускорения от радиуса описываемой точкой окружности определяется углом μ, который вычисляется по формуле
Подставляя сюда значения aτ и an, получаем
Так как ω и ε имеют в данный момент времени для всех точек тела одно и то же значение, то ускорения всех точек вращающегося твердого тела пропорциональны их расстояниям от оси вращения и образуют в данный момент времени один и тот же угол μ с радиусами описываемых ими окружностей. Поле ускорений точек вращающегося твердого тела имеет вид, показанный на рис.14.
Рис.13 Рис.14
3. Векторы скорости и ускорения точек тела. Чтобы найти выражения непосредственно для векторов v и a, проведем из произвольной точки О оси АВ радиус-вектор
Таким образом, модуль векторного произведения
7. Плоскопараллельное движение. Теорема о скоростях точек плоской фигуры. Плоскопараллельным (плоским) движением (ППД) твердого тела называется такое движение, при котором все точки тела перемещаются в плоскостях параллельных некоторой неподвижной плоскости (рисунок 2.11).
При таком движении точки, лежащие в разных плоскостях на одном отрезке, перпендикулярном неподвижной плоскости (например M1M2) совершают одинаковые движения.
Теорема о скоростях точек Скорость любой точки плоской фигуры равна геометрической сумме скорости выбранного полюса и скорости точки во вращательном движении фигуры вокруг полюса.
Производная от вектора AM, постоянного по величине и переменного по направлению, численно равна скорости точки М при вращении ее вокруг точки А.
Рис. 1.3
Вектор VMA= ω⋅AM перпендикулярен отрезку АМ. Численную величину скорости точки М можно получить, если воспользоваться теоремой косинусов
или спроецировать векторное равенство (1) на выбранные оси координат
8. Мгновенный центр скоростей и его применение при решении задач. Мгнове́нный центр скоросте́й — при плоскопараллельном движении абсолютно твёрдого тела точка, связанная с этим телом, которая обладает следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело. Она существует в любой момент времени, но её положение меняется со временем за исключением одного случая — вращательного движения. Теорема Эйлера-Шаля доказывает, что любое непоступательное перемещение фигуры в плоскости можно осуществить поворотом вокруг некоторого неподвижного центра. В соответствии с этим легко доказывается, что при плоско-параллельном движении в каждый момент времени существует точка, неизменно связанная с плоской фигурой, скорость которой в этот момент равна нолю. Эту точку называют мгновенным центром скоростей (МЦС). В учебниках эту точку пишут с индексом V, например PV, CV. При определении положения МЦС скорость любой точки может быть записана: VM=VCV+VMCV, где точка СV выбрана за полюс. Поскольку это МЦС и VCV=0, то скорость любой точки определяется как скорость вращении вокруг мгновенного центра скоростей.
Из рис. 1.5 видно, что мгновенный центр скоростей лежит в точке пересечения перпендикуляров, проведенных к скоростям точек, при этом всегда справедливо соотношение
Рис. 1.5
На нижеприведенных рисунках показаны примеры определения положения мгновенного центра скоростей и приведены формулы для расчета скоростей точек.
Для рисунка 1.6: 1. СV совпадает с точкой В VB=0. Шатун АВ вращается вокруг точки В
2.
3. МЦС лежит в «бесконечности»
4.
Рис. 1.6
Рис. 1.7
Рис. 1.8
здесь VB II VA В этом случае МЦС находится в “бесконечности”, т.е
Рис. 1.9
Формулы справедливы при отсутствии проскальзывания в точке СV.
Рис. 1.10
9. Теорема об ускорениях точек плоской фигуры. Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором
В правой части этого равенства первое слагаемое есть ускорение
Значение
где Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А, принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения Однако вычисление
При этом вектор
Если полюс А движется не прямолинейно, то его ускорение можно тоже представить как сумму касательной
Рис.41 Рис.42
Наконец, когда точка М движется криволинейно и ее траектория известна, то
10. Сложное движение точки. Теорема о сложении скоростей. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.132 сек.) |